Les vingt-cinq nombres premiers inférieurs à 100 sont : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, et 97. De telles listes de nombres premiers inférieurs à une borne donnée, ou compris entre
Concernant 49, la réponse est : Non, 49 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 49) est la suivante : 1, 7, 49. Pour que 49 soit un nombre premier, il aurait fallu que 49 ne soit divisible que par lui-même et par 1.
Réponse. Les mutiples de 49 ⇒7, 14, 21, 28, 35, 42, 49, 56, 63, 70 ......
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Concernant 51, la réponse est : Non, 51 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 51) est la suivante : 1, 3, 17, 51. Pour que 51 soit un nombre premier, il aurait fallu que 51 ne soit divisible que par lui-même et par 1.
49 est un multiple de 7 , car 49 = 7 X . 63 est un multiple de 9 , car 63 = 9 X . 28 est un multiple de 4 , car 28 = 4 X . 56 est un multiple de 8 , car 56 = 8 X .
Concernant 37, la réponse est : oui, 37 est un nombre premier car il n'a que deux diviseurs distincts : 1 et lui-même (37). Par conséquent, 37 n'est multiple que de 1 et 37.
18 n'est pas divisible par 4 car, 18 divise par 4 = 4,5 donc il n'est pas exact... 35 est divisible par 5 car, 35 divise par 5 = 7 donc c'est un nombre entier .
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, … 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, … 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, …
24 : en effet, 24 est bien un multiple de lui-même, puisque 24 est divisible par 24 (on a 24 / 24 = 1, donc le reste de cette division est bien nul) 48 : en effet, 48 = 24 × 2. 72 : en effet, 72 = 24 × 3. 96 : en effet, 96 = 24 × 4.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Un nombre premier est un entier naturel qui admet seulement deux diviseurs distincts entiers et positifs : 1 et lui-même. Selon cette définition, 0 et 1 ne sont pas des nombres premiers puisque 0 est divisible par tous les entiers positifs et 1 n'est divisible que par un seul entier positif.
Le problème, c'est que les nombres de la forme 2p -1 sont rarement premiers. Par exemple 211-1 = 2047, un nombre qui n'est pas premier car il est divisible par 23 et 89.
48 est multiple de 8. 48 est multiple de 12. 48 est multiple de 16. 48 est multiple de 24.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 1er cours offert !
PPCM(2,3), par exemple, est égal à 6 et PPCM(6,10), est égal à 30. Le plus petit multiple commun (PPCM) de deux nombres ou plus est le plus petit nombre également divisible par tous les nombres de l'ensemble.
· Un nombre est divisible par 2 si le chiffre de l'unité est pair. D'où, tous les nombres se terminant par 0, 2, 4, 6 et 8 sont divisibles par 2. · Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3. Par exemple, 4731 est divisible par 3, car 4 + 7 + 3 + 1 = 15.
Les multiples de 2 sont 0, 2, 4, 6, 8, ... Les multiples de 3 sont 0, 3, 6, 9, 12, ... Les multiples de 4 sont 0, 4, 8, 12, 16, ...
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 72) est la suivante : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Pour que 72 soit un nombre premier, il aurait fallu que 72 ne soit divisible que par lui-même et par 1.
Le nombre entier entre 1 et 100 est 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, ...