On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
Propriété : Les droites d'équation ax + by + c = 0 et a'x + b' y + c' = 0 sont parallèles si et seulement si ab'− a'b = 0. ( )= 0 soit encore : ab'− a'b = 0 . Définition : On appelle base du plan tout couple de deux vecteurs non colinéaires.
On appelle vecteur directeur de (D) tout vecteur non nul colinéaire à . Autrement dit, le vecteur donne la direction de la droite (D). Tous les vecteurs colinéaires non nuls à sont aussi vecteurs directeurs de (D) : il existe donc une infinité de vecteurs directeurs d'une droite, tous colinéaires entre eux.
Toute droite du plan admet une équation de la forme ax + by + c = 0 appelée équation cartésienne. Le vecteur est un vecteur directeur de cette droite.
Deux droites (d) et (d') sont parallèles si tout vecteur directeur de l'une est aussi vecteur directeur de l'autre. En effet, si est une équation cartésienne de (d), alors pour tout réel non nul, est une autre équation de la même droite.
Définition: Définition : Deux droites distinctes sont dites parallèles si elles n'ont aucun point en commun. Les droites (d1) et (d2) sont parallèles. Remarque : Deux droites qui ne sont pas parallèles sont sécantes.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).
(xB - xA ; yB - yA) est l'un des vecteurs directeurs de cette droite. Si une droite a pour équation réduite y =ax + b alors il suffit de déterminer deux points de cette droite pour trouver un vecteur unitaire.
Direction, sens et orientation d'un vecteur
L'orientation d'un vecteur fait référence à la direction (droite qui supporte le vecteur) et au sens (flèche) de celui-ci. Afin de bien distinguer ces trois notions, il est préférable de comparer plusieurs vecteurs ensemble.
Ces vecteurs sont dits directeurs à la droite. L'exemple le plus simple est celui d'un repère (O;→i,→j) ( O ; i → , j → ) où l'axe des abscisses peut être défini par l'origine O et son vecteur directeur →i tandis que l'axe des ordonnées l'est par O et par →j .
Vecteur directeur :
Le vecteur directeur d'une droite n'est pas unique : deux points quelconques de la droite peuvent définir un vecteur directeur. Si on a deux vecteurs ⃗ u et ⃗ v directeurs de la droite (d), alors ⃗ u et ⃗ v sont colinéaires et on a ⃗ ⃗ det(u ,v )=0.
Re : Différence entre un vecteur normal d'une droite et un vecteur directeur. Oui, il y a une différence, le vecteur normal d'un segment [AB] est perpendiculaire à ce segment, et le vecteur directeur et parallèle ( il dirige le segment ).
C'est pour cela que le nombre p s'appelle ordonnée à l'origine de la droite d. L'équation y=mx+p s'appelle équation réduite de la droite d. Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.
Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 = 2 x 5 et –15 = –3 x 5 donc = 5 . c) (4 ; 5 ) et (8 ; –10 ) ne sont pas colinéaires en effet : ≠ 0 et ≠ 0 et s'il existe tel que = , alors 8 = x 4 donc = 2 et -10 = x 5 donc = -2 .
Le déterminant est l'une des techniques qui permet de savoir si deux vecteurs sont colinéaires. S'ils se sont, le déterminant est nul. Et réciproquement, si le déterminant est nul les vecteurs sont colinéaires.
La norme du vecteur ⃑ 𝑣 , notée ‖ ‖ ⃑ 𝑣 ‖ ‖ , est la longueur du vecteur ou la distance entre ses extrémités. En particulier, un vecteur unitaire est un vecteur de norme égale à 1.
Vecteur : objet mathématique représenté par un segment fléché dont les caractéristiques sont : le point d'application, la direction, le sens et la norme (dite aussi valeur ou intensité).
On appelle vecteur normal de la droite (D) tout vecteur (non nul) orthogonal à un vecteur directeur de la droite. Si l'équation cartésienne de (D) est ax+by+c=0, alors un vecteur normal de (D) est le vecteur de coordonnées (a,b).
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P.
Si on connaît un point et un vecteur directeur de la droite
Pour représenter une droite lorsque l'on connaît un point et un vecteur directeur, il suffit de placer le point connu et de placer un second point grâce au vecteur directeur.
Pour déterminer si trois points sont alignés, il existe plusieurs méthodes. Les points A, B et C sont alignés ⇔ (AB) et (AC) ont le même cœfficient directeur . A(3 ; 7), B(0 ; –2) et C(1 ; 1) sont-ils alignés ? Les deux cœfficients directeurs sont égaux à 3, donc A, B et C sont alignés.
Pour indiquer les coordonnées du vecteur , on utilise la notation ou . On considère deux points A(xA ; yA) et B(xB ; yB). Le vecteur a pour coordonnées (xB – xA ; yB – yA ).
On peut trouver la première coordonnée du vecteur en calculant la différence entre les abscisses 𝑥 de l'extrémité et de l'origine ; la première coordonnée (ou de manière équivalente, la coordonnée en 𝑥 ) du vecteur ⃑ 𝑣 est − 7 − ( − 1 ) = − 6 .