Deux droites sont perpendiculaires si elles se croisent en formant des angles droits (90°).
Des droites perpendiculaires sont des droites sécantes qui se coupent à angle droit puisque la pente de l'une est l'opposée de l'inverse de la pente de l'autre. Deux droites perpendiculaires ont des pentes opposées et inverses.
Deux droites tracées dans un repère du plan sont parallèles si et seulement si leurs coefficients directeurs sont égaux. Elles sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs est égal à -1.
Les droites d'équations y = px + d et y = p'x + d' sont sécantes p ≠ p', c'est-à-dire si et seulement si leurs coefficients directeurs sont différents.
Deux droites ou deux segments perpendiculaires se coupent en formant un angle droit. On écrit (A) (B) qui signifie la droite A est perpendiculaire à la droite B. On trace des perpendiculaires à l'aide de la règle et de l'équerre.
La propriété de orthocentre d'un triangle
Si une droite passe par un sommet et l'orthocentre d'un triangles alors c'est une hauteur, elle est perpendiculaire au côté du triangle opposé à ce sommet.
Droites perpendiculaires :
Deux droites sont toujours soit sécantes, soit parallèles. Si deux droites sont sécantes et qu'elles forment un angle droit, alors elles sont perpendiculaires. Si deux droites sont parallèles, elles ne se couperont jamais, même si on les prolonge indéfiniment.
Des droites sécantes sont des droites qui se croisent en un seul point. On qualifie de point d'intersection le point de rencontre entre deux droites ou plus.
On dit que deux droites sont sécantes si elles ont un unique point commun. Pour étudier une courbe au voisinage d'un de ses points P, il est utile de considérer les sécantes issues de P, c'est-à-dire les droites passant par P et un autre point Q de la courbe.
Droites qui se coupent en un seul point. Une droite qui n'est ni parallèle, ni perpendiculaire à une droite donnée est parfois appelée une droite oblique.
Symbole. La relation de perpendicularité entre deux droites se note à l'aide du symbole « ⊥ » qui se lit « est perpendiculaire à ».
On rappelle que deux droites (AB) et (CD) sont parallèles si et seulement si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}. Les deux droites (AB) et (CD) sont parallèles si \left(\overrightarrow{AB} ;\overrightarrow{CD}\right) = 0 +k\pi, avec k \in \mathbb{Z}.
Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles. Si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre. Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles.
Deux droites sont sécantes lorsqu'elles ont un point commun. Ce point est appelé point d'intersection des deux droites.
Quand on a “ax+by+c=0”, “u ⃗(-b ; a)” est un vecteur directeur de la droite. Ici on utilise le déterminant pour vérifier que deux vecteurs sont colinéaires. Si deux droites d'un même plan ne sont pas parallèles, elles sont forcément sécantes.
Deux droites du plan affine sont parallèles si et seulement si elles n'ont aucun point commun ou si elles sont confondues. Deux droites ayant un et un seul point commun sont dites sécantes.
1. Endroit où deux lignes, deux routes, deux chemins se croisent : À l'intersection de la nationale et de la départementale. 2. En géométrie, lieu où des lignes, des surfaces, des volumes se rencontrent et se coupent : Point d'intersection.
La distance (mesurée perpendiculairement) qui sépare tous les points de deux droites parallèles est identique sur toute la longueur des droites.
Ces positions relatives sont par ailleurs caractéristiques des droites coplanaires : pour prouver que deux droites sont coplanaires il suffit de prouver qu'elles sont sécantes ou parallèles, et pour prouver que deux droites ne sont pas coplanaires, il suffit de montrer qu'elles ne sont ni sécantes ni parallèles.
Deux droites sont parallèles si et seulement si elles sont coplanaires et non sécantes (c'est-à-dire confondues ou n'ayant aucun point commun). Attention : Dans l'espace, 2 droites non sécantes ne sont pas forcément parallèles !
Deux droites sont perpendiculaires si et seulement si le produit de leurs pentes est égal à -1. Autrement dit, si m1 et m2 sont les pentes de deux droites, alors elles sont perpendiculaires si m1 * m2 = -1.
Définition : Deux droites perpendiculaires sont deux droites qui se coupent en formant un angle droit.
Propriété : Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles.
Si deux droites forment avec une sécante des angles correspondants égaux, alors ces droites sont parallèles. Si deux droites forment avec une sécante des angles alternes-internes égaux, alors ces deux droites sont parallèles.
Une propriété mathématique est une affirmation qui est toujours vraie. C'est une particularité d'un objet mathématique. Souvent, c'est l'une des caractéristiques de l'objet qui fait partie de la définition. Propriété 1 : Les diagonales d'un carré sont de même longueur.