Le produit scalaire de deux vecteurs est un nombre réel, qui peut être positif, négatif ou nul. sont bien orthogonaux. , on a . des vecteurs et a un nombre réel.
Si A se trouve entre H et B, le produit scalaire est négatif et positif sinon. On remarque que si H est confondu avec A, alors le produit scalaire est nul.
Le produit scalaire de deux vecteurs colinéaires vaut le produit de leurs normes : produit qui est positif si les deux vecteurs sont de même sens ; négatif sinon.
Si l´angle (OA,OB) est inférieur à PI/2 le produit scalaire est positif, si cet angle est supérieur à PI/2 le produit scalaire est negatif et si cet angle est égal à PI/2 le produit scalaire est nul.
Le produit scalaire est donc du signe du cosinus, c'est-à-dire positif si l'angle formé par les vecteurs est aigu et négatif si l'angle est obtus (à visualiser sur le cercle trigonométrique).
Un produit scalaire nul signifie que les vecteurs sont perpendiculaires, c'est-à-dire, que l'angle entre eux est °. Cela suppose qu'aucun des vecteurs n'est le vecteur nul.
Si le produit scalaire de deux vecteurs est nul, on dit que ces vecteurs sont orthogonaux. Pour que deux vecteurs non nuls aient un produit scalaire nul, il faut que leurs droites d'application soient perpendiculaires (ainsi, le projeté orthogonal du deuxième sur le premier est un point, de longueur nulle).
(d) Le produit scalaire de deux vecteurs. Il s'agit d'une opération de multiplication entre deux vecteurs donnant comme résultat un scalaire, c'est-à-dire un nombre. Il est noté en général avec un point →u⋅→v. Pour le distinguer de la multiplication usuelle, nous le noterons →u⊙→v.
Soit deux vecteurs →u et →v; le nombre réel résultant de l'opération notée →u⋅→v et telle que →u⋅→v=‖→u‖⋅‖→v‖cosθ, où ‖→u‖ désigne la norme du vecteur u, ‖→v‖ désigne la norme du vecteurv et θ est la mesure de l'angle formé entre les directions des deux vecteurs.
Si ϕ : E × E → C est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si ϕ : E × E → K est un produit scalaire, alors ϕ(x,y) est noté 〈x|y〉. Si 〈·|·〉 est un produit scalaire sur E alors pour tout x ∈ E, 〈x|x〉 ≥ 0. On pose alors x = √〈x|x〉 qu'on appelle la norme de x.
Le produit scalaire et le produit vectoriel sont deux calculs réalisés à partir deux vecteurs de même nombre de composantes. Ils ont en revanche des différences fondamentales: Avec le produit scalaire on obtient un scalaire (c'est-à-dire un nombre) tandis qu'avec le produit vectoriel on obtient un vecteur.
Propriété : Commutativité du produit scalaire
Le produit scalaire est commutatif : ⃑ 𝑢 ⋅ ⃑ 𝑣 = ⃑ 𝑣 ⋅ ⃑ 𝑢 . Enfin, on obtient ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑤 = ⃑ 𝑢 ⋅ ⃑ 𝑣 + ⃑ 𝑢 ⋅ ⃑ 𝑤 . Cette équation montre que le produit scalaire est distributif.
Le vecteur b a la même direction que a. Son sens dépend du signe de m : si m est positif, alors b aura le même sens que a, alors que si m est négatif, alors b sera de sens opposé à celui de a.
Definition. - par convention, le vecteur nul est orthogonal à tout vecteur. Les vecteurs et sont dits orthogonaux si les droites (AB) et (AC) sont perpendiculaires.
Deux vecteurs non nuls sont orthogonaux si, et seulement si, u ⋅v =0.
Si les vecteurs sont parallèles et de même sens, leur produit scalaire est égal au produit de leurs longueurs. En effet : α = 0 et cos 0 = 1 . Si les vecteurs sont parallèles et de sens contraires, leur produit scalaire est égal à l'opposé du produit de leurs longueurs.
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
Pour savoir si →u, →v et →w sont coplanaires:
On cherche si deux vecteurs sont colinéaires parmi les 3. Pour cela, on regarde si leurs coordonnées sont proportionnelles. - S'il y a 2 vecteurs colinéaires alors les 3 vecteurs sont toujours coplanaires. - Sinon on cherche 2 nombres a et b tels que →w=a→u+b→v.
Le produit vectoriel est une opération qui peut être appliquée à deux vecteurs et qui produit un autre vecteur. Le produit vectoriel est utilisé dans de nombreux domaines de la physique. Il peut notamment être utile pour calculer le couple sur un objet.
La norme d'un vecteur correspond à sa longueur, c'est-à-dire à la distance qui sépare les deux points qui définissent le vecteur.
Corollaire 34 – Si E est de dimension n, la forme bilinéaire symeétrique associée `a une forme quadratique q est un produit scalaire si et seulement si la signature de q est égale `a (n, 0).
La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853.
On calcule la matrice produit C = A B . Chacun des éléments de la matrice est le produit scalaire du vecteur associé à l'une des lignes de la matrice et du vecteur associé à l'une des colonnes de la matrice . Plus précisément c i , j est le produit scalaire du vecteur a i → et du vecteur b j → .
Définition 2.23 Une forme quadratique q sur un espace vectoriel réel E est dite définie positive (resp. négative) quand, pour tout x ∈ E non nul, on a q(x) > 0 (resp. q(x) < 0).