En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide. Il est le plus petit des entiers positifs ou nuls.
Ce sont les Babyloniens qui vont les premiers utiliser le zéro (vers le IIIe siècle après J. -C.), non pas comme un nombre ni même un chiffre, mais en tant que marqueur signifiant l'absence.
L'expression de gauche, composée d'une somme infinie de termes égaux à 1, tend vers l'infini. Ainsi 0 est égal à l'infini. Et pourtant 0 n'est pas égal à l'infini.
Le zéro n'est plus seulement un symbole utilisé pour marquer un vide, mais il devient un nombre à part entière. En 628, dans un traité d'astronomie appelé le Brahma Sphuta Siddhanta, Brahmagupta (598 ; 660) définira le zéro comme la soustraction d'un nombre par lui-même (a - a = 0).
Les nombres naturels 0 ; 1 ; 2 ; 3 ; 4 [...], les entiers relatifs [...] -3 ; -2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 [...], les nombres rationnels (1/2, -3/4 par exemple) sont aussi des nombres réels.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Le zéro, tout comme les autres chiffres, n'ont pas été inventés ou découverts par les Arabes, mais par les Indiens. En revanche, ce sont les Arabes, excellents intermédiaires, qui ont diffusé ces chiffres dans toute l'Europe au cours du Xème siècle.
« Ce zéro indien est le germe à partir duquel naîtra le concept du zéro en tant que nombre à part entière, illustré par ce même point ou cercle, quelques siècles plus tard.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
L'invention du zéro a également créé une nouvelle manière plus précise de décrire les fractions. Ajouter des zéros à la fin d'un nombre augmente sa grandeur ; ajouter des zéros au début de ce nombre, après la virgule, la diminue. Placer infiniment des nombres à droite de la virgule correspond à une précision infinie.
Pour la civilisation indienne, le signe infini fait référence aux 8 bras du dieu Shiva. Il désigne aussi les 8 règlements de conduite et les 8 vœux prononcés par les moines bouddhistes. En Chine, ce symbole représente les 8 pétales des fleurs de lotus ainsi que les 8 piliers du Ming-Tang et les 8 sentiers du Tao.
Plusieurs justifications existent à ce fait et sont décrites dans cet article. En revanche, en analyse, l'expression f(t) peut ne pas avoir comme limite 1 lorsque f(t) et g(t) tendent vers 0, ce qui a conduit certains auteurs à laisser l'expression 00 comme non définie. Ce point de vue est toutefois très minoritaire.
Un nombre premier est un entier naturel qui admet seulement deux diviseurs distincts entiers et positifs : 1 et lui-même. Selon cette définition, 0 et 1 ne sont pas des nombres premiers puisque 0 est divisible par tous les entiers positifs et 1 n'est divisible que par un seul entier positif.
En arithmétique ordinaire, le nombre 0 n'a pas de signe, de sorte que −0, +0 et 0 sont identiques.
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
Vous avez peut-être déjà vu cette idée séduisante : nos chiffres correspondraient au nombre d'angles contenus dans chacune de leur forme.
Car les mathématiques nous entourent: elles sont dans nos téléphones portables, nos ordinateurs, nos cartes bancaires comme sur les verres à mesure pour la farine de nos gâteaux. Les premières mathématiques ont certainement servi à cela: compter. Compter les doigts, les objets, les animaux d'un troupeau.
On peut ainsi construire ainsi de très grands nombres entiers en utilisant trois ou quatre symboles. En résumé, l'imagination mathématique de l'Homme n'a qu'une seule limite : l'infini.
Lorsque l'on parle d'un nombre non-nul, on fait référence à un nombre qui n'est pas zéro.
Le mathématicien al-Khwarizmi est le premier à les décrire. La graphie de ces signes évolue avec le temps et aboutit à deux notations distinctes : une de type oriental adoptée au Moyen et au Proche-Orient, une de type occidental pratiquée au Maghreb et qui parvient en Espagne au Xe siècle.
Le nombre 9 est celui qui contient en son sein la totalité, c'est l'inclusion totale, la non différenciation. Le neuf ne s'impose pas, il s'efface devant les autres nombres et leur laisse toute la place. C'est magique non ! : 9 = 0.
Les nombres naturels, représentés par N , regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble. Les nombres naturels représentent tous les nombres entiers positifs.
« Il y a 3 zéros dans 1 millier (1 000), 6 dans 1 million (1 000 000) et 9 dans 1 milliard (1 000 000 000). Au-dessus du milliard, on trouve le billion (12 zéros), le billiard (15 zéros), le trillion (18 zéros), le trilliard (21 zéros), le quadrillion (24 zéros), le quadrilliard (27 zéros)... » Billions.