En dehors des fonctions linéaires et affines, la représentation graphique d'une fonction n'est pas une droite. L'image de x par f est l'ordonnée du point de C_{f} d'abscisse x. Les antécédents de y par f sont les abscisses des points de C_{f} d'ordonnée y.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
-Si on cherche l'image de x, on place x sur l'axe des abscisses et alors il suffit de prendre l'ordonnée du point d'intersection entre la droite verticale passant par x et la courbe de la fonction f.
A partir de la courbe de la fonction
Déterminer le ou les antécédents d'une valeur a par une fonction f dont seulement la courbe est connue, revient à trouver les abscisses des intersections de la courbe avec la ligne d'ordonnée y=a .
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
On dit que l'image de 5 par la fonction f est 25. Cette image est unique. L'image de 5 par la fonction f se note f(5). On dit aussi que 5 est un antécédent de 25 par la fonction f.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
C'est l'outil mathématique qui, à un nombre, fait correspondre son carré. On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
L'antécédent de 20 par la fonction g est 3. Lire des images sur une représentation graphique. On cherche l'image du nombre 2. on repère le nombre 2 sur l'axe des abscisses et on dessine un chemin vertical jusqu'à la courbe.
Le seul antécédent de 8 par la fonction f est donc x = 4.
Si nous donnons 5 comme valeur à , l'image de 5 par la fonction sera 5 2 + 3 = 28 .
On lit donc que l'image de 7 est 4. On peut noter : (7) = 4.
Si M a pour abscisse x, alors son ordonnée est f(x). donc l'image de 2 par f est 2.
Le seul antécédent de 12 par la fonction f est donc x = 4.
L'image de 4 par la fonction f est 0.
On dit que 9 est l'image de -3 par la fonction f.
Soit f la fonction définie par f:x->f(x)=x². Déterminer les antécédents (s'ils existent) de 4,1,1/4,0,-1. On résout : f(x)=4 soit x²=4 soit x=2 ou x=-2. Les antécédents de 4 par f sont 2 et -2.
2) Nous voyons graphiquement que (3) = 9 et que (−3) = 9 Donc les antécédents de 9 par sont 3 et -3 .
, on appelle antécédent (par f) d'un élément y de F tout élément dont l'image par f est y, c'est-à-dire tout élément x de E tel que f(x) = y. Dans ce diagramme d'application, 1 et 4 sont des antécédents de b.
Calculer l'antécédent de 22 par la fonction f. Réponse : pour déterminer l'antécédent d'un nombre par une fonction affine, il faut résoudre une équation. Soit x l'antécédent cherché, on a f(x) = 22 autrement dit 7x - 6 = 22, soit 7x = 28 et donc x=287 = 4, donc l'antécédent de 22 par f est 4.
L'antécédent de −2 par la fonction f est −3. Soit f la fonction définie sur \mathbb{R} par f\left(x\right)=\left(3x+1\right)^{2}.
Pour trouver les antécédents de 10 par la fonction f(x)=x²+1, on résout l'équation x²+1=10. On obtient d'abord x²=10-1, puis x²=9, puis x²-9=0, puis x²-3²=0, puis (x+3)(x-3)=0, puis x+3=0 ou x-3=0. Donc x=-3 ou x=3.
- Elle a une fonction informative lorsqu'elle apporte une information. - Elle a une fonction explicative lorsqu'elle apporte une explication. Nous étudierons ces deux dernières fonctions plus précisément et les illustrant par des exemples précis. Informer est une des fonctions essentielles de l'image.
En mathématiques, on dit que y est l'image de x par la fonction f si y = f(x). Par extension on appelle image d'une partie E par une fonction f l'ensemble. des éléments y pour lesquels il existe un antécédent dans E.
Cette réponse est verifiée par des experts
Pour calculer l'image de 12 par la fonction f(x)=3x, il suffit de remplacer x par 12 dans f(x)=3x. Sur le graphique ci-joint : la représentation graphique de la fonction h(x) = x+40.