Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
"Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
La droite sur laquelle on lit les abscisses des points est appelée axe des abscisses et celle sur laquelle on lit les ordonnées des points est appelée axe des ordonnées. soient chacune égales à 1 est dit orthonormé, ou repère orthonormal.
L'axe horizontal (abscisses) axe, également appelé axe des x, d'un graphique affiche des étiquettes de texte au lieu d'intervalles numériques, et offre moins d'options d'échelle que celles disponibles pour l'axe vertical (ordonnées), également appelé axe des y.
En langage mathématique, l'abscisse à l'origine est la valeur de x lorsque f(x)=0! Donc si tu as la fonction f(x) = 2x + 16, chercher l'abscisse à l'origine signifie de chercher la valeur de x pour laquelle 0= 2x + 16.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal. Pour trouver son ordonnée, on trace une parallèle à l'axe des abscisses ; on lit alors l'ordonnée du point à l' intersection avec l'axe vertical.
L'abscisse d'un point correspond au nombre d'unités de graduation entre l'origine (O) et le point. Tu peux donc déterminer l'abscisse d'un point en comptant les unités de graduation à partir de l'origine. Il y a 2 unités de graduation entre l'origine et le point C. Le point C a pour abscisse 2, on note C(2).
rappel : l'axe des abscisses est la droite horizontale passant par O et l'axe des ordonnées est la droite verticale passant par O. A chaque valeur de x est associée une image notée f(x).
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Axe perpendiculaire à l'axe vertical et parallèle à la ligne d'horizon. En coordonnées cartésiennes, l'axe horizontal est, par convention, employé pour représenter les coordonnées x.
Locution nominale. (Analyse) Axe des valeurs z. (Analyse) (En particulier) Troisième axe dans un espace à n dimensions, n étant trois ou plus, perpendiculaire à l'axe des x et à l'axe des y.
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
Lire les coordonnées du point
Le point A est associé à 2 nombres relatifs (2 et -3) qui sont ses coordonnées: Le 1er nombre (2) est l'abscisse: il indique la position sur l'axe horizontal. Le 2e nombre (-3) est l'ordonnée: il indique la position sur l'axe vertical.
Si l'on veut travailler dans l'espace à trois dimensions, il faut considérer 3 axes. Un repère dans l'espace est constitué de trois droites sécantes, chacune munie d'une unité de longueur, et qui se coupent en leur point origine. Ces trois doites sont l'axe des x, l'axe des y et l'axe des z.
» La pente d'une droite horizontale (parallèle à l'axe des abscisses) est nulle : a = 0 une telle droite entre dans le cadre des équations de la forme y = ax + b. Une droite verticale (parallèle à l'axe des ordonnées) n'a pas de pente au sens propre.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Pour lire les antécédents, la marche à suivre est la suivante: On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f.
L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0. L'antécédent de 3 par f est 6.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
I. Lire le graphique
1) Il faut repérer 3 choses : le titre, la grandeur variable et la grandeur mesurée. 2) Trouver les coordonnées d'un point remarquable A chaque valeur de la grandeur variable (axe horizontal) correspond une valeur de la grandeur mesurée (axe vertical).
Soit f une fonction définie sur un intervalle D. On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Une fonction f est un procédé qui à un nombre x associe un nombre noté f(x). On note : f : x | f(x) on lit : la fonction f qui, à un nombre x, associe le nombre f(x). Le nombre f(x) est appelé image de x par la fonction f. Le nombre x est un antécédent de f(x) par la fonction f.
On dit que ce nombre est l'abscisse de ce point. Exemple 1 : L'abscisse de A est (-2), on le note A(-2). B a pour abscisse +4,5, on écrit donc B(+4,5).
L'équation réduite d'une droite verticale s'écrit x = k x=k x=k où k est un nombre réel constant. Cette équation de droite signifie que tous les points qui ont pour abscisse −2 décrivent cette droite quelle que soit la valeur de leur ordonnée.
L'expression « abscisse à l'origine » désigne parfois aussi chacun des points du graphique d'une fonction où celui-ci coupe l'axe des abscisses. Il s'agit des points dont l'abscisse est zéro.