Si le montant de l'achat est diminué par une offre promotionnelle, alors le solde se voit augmenter, ce qui traduit la logique élémentaire se cachant derrière la règle du « moins par moins donne plus ».
Règle des signes dans un produit : - le produit de deux nombres de même signe est positif - le produit de deux nombres de signes différents est négatif.
On trace un point sur le premier terme de l'opération à effectuer. Le deuxième terme de l'addition nous indique le nombre de bonds à effectuer sur la droite numérique. On fait des bonds vers la droite si le nombre est positif et des bonds vers la gauche si le nombre est négatif.
La somme de deux nombres négatifs est négative. Le contraire d'un nombre négatif est un nombre strictement positif.
(+7)-(-9)=(+7)+(+9) . Ils sont égaux car quand on soustraits des nombres relatifs il faut ajouter son opposé .
Règle des signes : Lorsqu'on divise deux nombres relatifs : – s'ils sont de même signe, le résultat est positif ; – s'ils sont de signe contraire, le résultat est négatif.
Le MOINS l'emporte sur le PLUS. Le MOINS et le MOINS se retournent en PLUS.
Nous savons déjà effectuer des additions de nombres négatifs. Nous allons maintenant apprendre à additionner des nombres négatifs et positifs. Si l'on additionne un nombre positif et un nombre négatif, cela revient à diminuer le nombre positif. On enlève (soustrait) le nombre d'unité que représente le nombre négatif.
La distance à zéro d'un nombre relatif est le nombre sans son signe. Sur une droite graduée, cela correspond à la distance entre l'origine et le point qui a pour abscisse ce nombre.
On a -0=0. Aussi, 0 est le seul nombre à la fois positif et négatif. Ne pas confondre positif et strictement positif de même que négatif et strictement négatif.
Mais c'est le plus souvent au mathématicien indien Brahmagupta (598 ; 660) que l'on attribue la découverte des «nombres» négatifs.
Règle : pour soustraire un nombre, il faut additionner son opposé. Exemples : (–13) – (–9) = (–13) + (+9) = – 4 On transforme la soustraction en addition et on prend l'opposé de –9 qui est +9.
Non, on ne peut pas démontrer que 1+1=2. C'est effectivement une convention que les mathématiciens ont choisit pour s'entendre. En fait, il faut plutôt considérer que 2 est le nombre qui vaut 1+1. Ce qui devient une définition plus qu'une convention.
Règle 1: Pour additionner des nombres de même signe on garde le signe et on ajoute les valeurs. Règle 2: Pour additionner des nombres de signes différents, on prend le signe de celui qui a la plus "grande valeur" et on fait "plus grand moins plus petit".
la multiplication et la division sont prioritaires sur l'addition et la soustraction ; dans les parenthèses, on effectue les multiplications et divisions de gauche à droite. Même chose ensuite pour les additions et soustractions.
En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif.
Dans un cadre numérique : Si on travaille avec des nombres (cadre numérique), il est facile de distinguer les nombres positifs et les nombres négatifs. En effet la présence d'un signe « + » ou l'absence de signe indique qu'il est positif. La présence d'un signe « - » indique qu'il est négatif.
Pour 2 - 30, le plus simple consiste à inverser les deux nombres, puis à faire l'opération et enfin, à inverser le signe. Ainsi, 30 - 2 = 28, car 28 n'est qu'à deux unités de 30. Il faut à présent inverser le signe qui devient alors négatif.
On rajoute x > 0 si x tend vers 0 par valeurs positives, et x < 0 si x tend vers 0 par valeurs négatives. Cela revient au même, 0+ signifie x > 0, et 0– signifie x < 0.
Pour multiplier ou diviser deux nombres relatifs la règle est la suivante : La distance à zéro (ou valeur absolue) du résultat s'obtient en multipliant (ou divisant) les distances à zéro des deux nombres. 'par' pour 'multiplié par' ou 'divisé par' : la règle des signes est la même pour les deux opérations.
En arithmétique ordinaire, le nombre 0 n'a pas de signe, de sorte que −0, +0 et 0 sont identiques.
Si la parenthèse est précédée d'un signe + : On supprime les parenthèses et le signe + et on conserve les signes qui sont entre les parenthèses. Exemples : Si la parenthèse est précédée d'un signe - : On supprime les parenthèses et le signe – et on change les signes qui sont entre les parenthèses.