Alerte bug. Le nombre de décimales de Pi est infini : après 3,14, il y a un nombre infini de chiffres. Infini on vous dit : on ne peut pas en voir la fin car Pi est un nombre irrationnel, c'est-à-dire qu'il n'est pas le résultat du rapport entre deux entiers (on ne peut pas l'écrire sous forme de fraction).
Preuve de Lambert
en utilisant les développements en série entière des fonctions cosinus et sinus. Ensuite, Lambert montre que si x est non nul et rationnel alors tan x est irrationnel. Or, comme tan(π/4) = 1, il en déduit que π/4 est irrationnel et donc que π est irrationnel.
Lambert a démontré en 1768 que pi est un nombre « irrationnel », c'est-à-dire n'est pas le résultat de la division de deux nombres entiers. Une conséquence en est que pi possède une infinité de chiffres après la virgule : la quête des décimales n'aura donc jamais de fin.
Le nombre Pi dans les probabilités et les statistiques
Les probabilités et les statistiques ne dérogent pas à la règle : Pi est partout ! Il est utilisé par exemple dans la loi normale d'espérance et d'écart type mais aussi dans la loi de Cauchy. Des mathématiciens ont utilisé π dans des expériences de probabilité.
Pi est un nombre irrationnel (c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique). Les premières sont : 3,14159265358979323846264338327950288419716939937510582. Dans la pratique, on utilise 3,14 mais il est souvent aisé de retenir 22 septièmes ou racine de 10 pour valeur approchée de Pi.
Si vous agrandissez un cercle, en multipliant son diamètre par n'importe quelle valeur, vous multiplierez d'autant son périmètre : le périmètre d'un cercle est proportionnel à son diamètre. Et le rapport de proportionnalité entre ces deux quantités est le nombre Pi.
Il s'agit du rapport entre la circonférence d'un cercle et son diamètre ou entre la superficie d'un cercle et le carré de son rayon. 3,14 est une approximation, dans la réalité c'est 3,14159265358… Une suite infinie de décimales qui a valu au nombre Pi une salle entière au Palais de la découverte.
C'est Archimède, un mathématicien grec vivant à Syracuse, qui le premier démontre vers 250 avant J. -C. les formules du cercle et que c'est bien la même constante Pi qui intervient dans le calcul de la circonférence et celui de la surface.
Son origine se trouve dans les cercles. C'est tout simplement le résultat de la division du périmètre d'un cercle par son diamètre. Ce rapport donne toujours le même nombre quelle que soit la taille du cercle. On dit que c'est une constante et on l'a appelé pi qu'on écrit avec la lettre grecque π.
« Pi » défini et expliqué aux enfants par les enfants. Pi est un nombre qui correspond au rapport entre la circonférence d'un cercle et son diamètre. Il se note par la lettre grecque π qui se prononce [pi].
π (pi), appelé parfois constante d'Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C'est le rapport constant de la circonférence d'un cercle à son diamètre dans un plan euclidien.
La méthode d'Archimède permet d'obtenir une approximation du nombre π. Pour cela on calcule les périmètres de polygones réguliers inscrits et circonscrits à un cercle de rayon 12. Plus le nombre de côtés du polygone sera important, plus on se rapprochera du périmètre du cercle, à savoir π.
Les dix derniers chiffres connus de Pi sont "7817924264", affirme la HES qui indique qu'elle ne dévoilera le numéro complet qu'une fois le record homologué par le Livre Guinness.
Il n'y en a pas. En mathématiques il y a plusieurs infinis ou puissances,ce sont les nombres transfinis (aleph 0,aleph 1,aleph 2,etc…) et ces nombres sont eux-meme en nombre "infini",car l'ensemble des parties d'un ensemble est strictement supérieur à cet ensemble.
Al-Khawarizmi, au IXe siècle, est persuadé que π est irrationnel. Moïse Maïmonide fait également état de cette idée durant le XIIe siècle. Ce n'est cependant qu'au XVIIIe siècle que Johann Heinrich Lambert prouve ce résultat.
Le plus simple serait de le définir comme tout ce qui n'est pas fini. Par exemple, les diviseurs de 12 sont en nombre fini (1, 2, 3, 4, 6 et 12), par contre ses multiples sont en nombre infini (12, 24, 36, …). Dans ce cas, il n'est pas étonnant d'entendre souvent que l'univers est infini.
La méthode de Monte-Carlo pour calculer π se fonde sur un principe très simple : la surface d'un disque de rayon r est πr2. Elle permet d'obtenir expérimentalement quelques décimales de π.
À quoi correspond le nombre Pi ? Tout d'abord, Pi est la 16e lettre de l'alphabet grec. C'est Archimède, mathématicien grec de l'Antiquité, qui a théorisé pour la première fois le nombre Pi. Il s'est aperçu que la circonférence d'un cercle divisé par son diamètre était toujours égale à une même valeur : PI (π).
Connu depuis la plus haute Antiquité mais de manière empirique, étudié par Pythagore au 6e siècle avant J. -C., le nombre d'or ne sera théorisé par écrit que trois siècles plus tard par le mathématicien grec Euclide. Euclide étudie les polygones réguliers.
L'histoire de Pi retrace le périple extraordinaire d'un jeune garçon de dix-sept ans qui survit miraculeusement à un naufrage en plein océan Pacifique. Ce récit fait penser à la fois au mythe de l'arche de Noé, à l'Odyssée d'Homère et à Robinson Crusoë.
Que π soit entier ou non ne dépend pas d'un système de numération. Ce nombre fait partie de deux systèmes de numération, R et C et il est transcendant dans ces deux systèmes (la définition est la même). N'étant pas un nombre rationnel, π ne peut pas être un nombre entier.
Π est un nombre irrationnel, car c'est un nombre non répétitif et sans fin. Parce qu'elle ne peut pas être simplifiée, la racine carrée de 2 est un nombre irrationnel.
Sur les cônes de pin, les ananas, ou les fleurs de la famille des tournesols, on observe des motifs en forme de spirales, qui s'organisent en deux réseaux qui se croisent. Si la curiosité nous pousse à compter les spirales de ces réseaux, on obtient très souvent deux nombres consécutifs de la suite de Fibonacci.
Cet homme s'appelle Piscine-Molitor Patel (le prénom vient de la piscine Molitor à Paris), il est le fils du directeur d'un parc zoologique à Pondichéry. Durant son enfance, Piscine, qui était le souffre-douleur de son école à cause de son prénom, a alors décidé de prendre le nom de « Pi ».