Un triangle rectangle est un triangle dont un angle est droit, c'est-à-dire à 90°. C'est aussi une figure plane à trois côtés dont le carré du côté le plus long est égal à la somme des carrés des deux autres côtés.
INFOGRAPHIE - Dès l'époque babylonienne, des scribes de Sumer utilisaient déjà une table pour calculer les côtés de triangles rectangles.
Un triangle rectangle est un triangle qui a un angle droit. Son plus grand côté, opposé à l'angle droit, se nomme l'hypoténuse. Le triangle ABC est rectangle en A.
Si un triangle est inscrit dans un cercle et que l'un des côtés du triangle est un diamètre du cercle, alors le triangle est rectangle.
Si un triangle est rectangle alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si, dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle.
Dans un triangle:
Si le carré de la mesure de son plus grand côté est égal à la somme des carrés des mesures des deux autres côtés, alors ce triangle est rectangle et le plus grand côté est son hypoténuse.
Réciproque du théorème de Pythagore: "Un triangle est rectangle si le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des 2 autres côtés."
La contraposée du théorème de Pythagore : Si, dans un triangle, le carré de la longueur du plus grand côté n'est pas égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle n'est pas rectangle.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
"Tout est nombre" : telle était la devise de l'école pythagoricienne qui proclamait que les dieux avaient ordonné l'univers par des nombres. Ce voyage dans le passé permet de comprendre qu'avec des cailloux, de nombreux résultats mathématiques furent énoncés.
Fiche n°1 : Le théorème de Pythagore. I- Calculer une longueur. Énoncé : Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Il doit son nom à Pythagore de Samos, philosophe de la Grèce antique du VI e siècle av. J. -C. , cependant le résultat était connu plus de mille ans auparavant en Mésopotamie et a vraisemblablement été découvert indépendamment dans plusieurs autres cultures.
Dans le cas d'un triangle rectangle, les côtés adjacents à l'angle droits constituent une base et sa hauteur. Par conséquent, pour calculer l'aire d'un triangle rectangle, il faut multiplier les longueurs des deux côtés adjacents à l'angle droit et diviser le résultat par 2.
D'après le théorème de Pythagore : Si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors ce triangle est un triangle rectangle. Si BC² =AB² +AC² , alors ABC est rectangle en A.
Si un quadrilatère a trois angles droits alors c'est un rectangle. Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle. Si un parallélogramme a un angle droit alors c'est un rectangle.
Dans le cas d'un triangle rectangle ABC rectangle en B, le cosinus de l'angle A est égal à la longueur du côté adjacent à l'angle A divisée par la longueur de l'hypoténuse, donc cos A = AB/AC.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Le théorème de Thalès permet donc de calculer des distances dans une configuration géométrique comportant des droites parallèles. Ce théorème implique donc qu'il ne peut pas être utilisé pour les triangles rectangles. Si un triangle est rectangle, c'est qu'il ne possède pas de droites parallèles.
- Méthode 1 : utiliser les propriétés des droites parallèles et des droites perpendiculaires pour prouver qu'il y a un angle droit. - Méthode 2 : utiliser la caractérisation de Pythagore et l'égalité de Pythagore. - Méthode 3 : utiliser le théorème du cercle circonscrit.
Réciproque du théorème de Thalès
Montrer que les droites (AB) et (TE) sont parallèles. Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Qu'est ce que l'hypoténuse d'un triangle rectangle ? Définition : Dans un triangle rectangle, l'hypoténuse est le côté opposé à l'angle droit.