- Un nombre est divisible par 4, si le nombre formé par ses deux derniers chiffres est lui-même divisible par 4. - Un nombre est divisible par 3, si la somme de ses chiffres est divisible par 3. - Un nombre est divisible par 9, si la somme de ses chiffres est divisible par 9.
Si un entier est divisible par 9, alors il est divisible par 3. Si un entier est divisible par 3, alors il est divisible par 9. Si un entier est divisible par 2 et par 3, alors, il est divisible par 5.
Un nombre entier est divisible par 3 si la somme de ses chiffres est un multiple de 3 (3 ; 6 ; 9 ; etc.).
Un nombre entier est divisible par 3 : → Quand la somme de ses chiffres est un multiple de 3 et uniquement dans ce cas. 7 152 est divisible par 3 car 7+1+5+2=15 et 15 est un multiple de 3 /est divisible par 3. 7 153 n'est pas divisible par 4 car 53 n'est pas un multiple de 4 (table de 4).
Un nombre est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9. 423 est divisible par 9 car 4 + 2 + 3 = 9 l'est.
Un nombre carré peut s'écrire sous la forme d'un produit de deux facteurs égaux. Exemple : 9 est un nombre carré car 9 possède 3 diviseurs : 1, 3, 9. Un nombres rectangle possède un nombre pair de diviseurs.
Tous les nombres terminés par 0 sont divisibles par 10. Dans ce tableau seuls 20, 30 et 40 sont exactement divisibles par 10. Les autres nombres ont des chiffres après la virgule: 1, 2, 3, 4, 5, 6, 7, 8 ou 9. En fait tous les chiffres de 1 à 9.
345 et 670 se terminent soit par 5 ou 0 donc ils sont divisibles par 5. a est divisible par 9.
b) 456 est divisible par 3. En effet, 4 + 5 + 6 = 15 est divisible par 3. Définition : Un nombre entier est premier s'il possède exactement deux diviseurs qui sont 1 et lui- même.
Un nombre est divisible par 3 si la somme de ses chiffres est un multiple de 3. Par exemple, 147 est divisible par 3 (car 1+4+7=12 et 12 est un multiple de 3), mais 275 ne l'est pas, car 14 n'est pas un multiple de 3. Un nombre est divisible par 5 s'il se termine par 0 ou 5.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 999) est la suivante : 1, 3, 9, 27, 37, 111, 333, 999.
3) divisibles par 3 : 36 ; 78 ; 927 ; 345.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 45) est la suivante : 1, 3, 5, 9, 15, 45. Pour que 45 soit un nombre premier, il aurait fallu que 45 ne soit divisible que par lui-même et par 1.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 670) est la suivante : 1, 2, 5, 10, 67, 134, 335, 670.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 240) est la suivante : 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 105) est la suivante : 1, 3, 5, 7, 15, 21, 35, 105.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 344) est la suivante : 1, 2, 4, 8, 43, 86, 172, 344.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 145) est la suivante : 1, 5, 29, 145.
Dans l'ensemble des entiers naturels
On remarque alors que 1 divise tout entier naturel et que 0 est divisible par tout entier naturel.
· Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3. Par exemple, 4731 est divisible par 3, car 4 + 7 + 3 + 1 = 15. La somme 15 est divisible par 3. · Un nombre est divisible par 4 si le nombre formé par ses deux derniers chiffres est divisible par 4.
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, …
8- Les multiples de 9 ont la somme de leurs chiffres égale à 9. 9- Les multiples de 15 sont à la fois multiples de 5 et multiples de 3. Ils se terminent donc par 0 ou 5, et ont la somme de leurs chiffres égale à 3, 6, ou 9.
Pour chercher un critère de divisibilité par m en base 10, il suffit de chercher s'il existe un entier relatif k tel que 10k – 1 soit un multiple de m (on scrute donc les nombres de la forme +… 9 ou –…1). Il suffit alors d'ajouter k fois le chiffre des unités au nombre de dizaines.
Ex. : 30, 790, 9 850, 213 850, etc. Pour trouver les multiples de 3, il faut additionner tous les chiffres composant le nombre : si le total est égal à 3, 6 ou 9, c'est bien un multiple de 3. Ex. : si l'on additionne le 1 et le 2 du nombre 12, on trouve 3 (1 + 2 = 3) ; donc 12 est un multiple de 3 (3 × 4 = 12).