Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ≤ f(x2).
Théorème : Soit I un intervalle de R et f:I→R f : I → R dérivable. Alors : f est croissante sur I si et seulement si, pour tout x∈I x ∈ I , f′(x)≥0 f ′ ( x ) ≥ 0 ; f est strictement croissante sur I si et seulement si f′≥0 f ′ ≥ 0 et si f′ n'est identiquement nulle sur aucun intervalle [a,b]⊂I [ a , b ] ⊂ I avec a<b .
f est strictement croissante si et seulement si pour tout x ∈ I, f ' (x) ≥ 0 et de plus l'ensemble des points où la dérivée f ' s'annule est d'intérieur vide (c'est-à-dire qu'il ne contient aucun intervalle non trivial).
Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite : Sur l'intervalle [0 ; 2,5], on monte, on dit que la fonction est croissante. Sur l'intervalle [2,5 ; 5], on descend, on dit que la fonction est décroissante.
MÉTHODE 1. –
Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.
Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ≤ f(x2).
On dit qu'une fonction f est strictement croissante ssi pour x et y dans le DD de f , si on a x < y, on a aussi f (x) < f (y). En langage plus formel, ça donne ∀x,y ∈ DD(f ),x < y ⇒ f (x) < f (y). La fonction cube x ↦→ x3 est strictement croissante, bien que sa dérivée s'annule (en zéro).
Si le taux de variation est positif (a>0), la fonction est croissante sur tout son domaine. Si le taux de variation est négatif (a<0), la fonction est décroissante sur tout son domaine.
Une des méthodes les plus couramment utilisées pour déterminer le sens de variation d'une fonction est l'étude du signe de sa dérivée. ➕/➖ La dérivée d'une fonction représente son taux de variation instantanée, et son signe nous renseigne sur la croissance ou la décroissance de la fonction.
Pour montrer qu'une fonction f(x) est croissante, il suffit de montrer f(x + a) > f(x) si a est strictement positif ou ce qui revient au même que f(x + a) - f(x) > 0 si a > 0. Avec f(x) = x3 on y arrive comme suit : (x+a)3−x3=x3+3ax2+3a2x+a3−x3.
Une fonction f est décroissante sur un intervalle I lorsqu'elle inverse l'ordre des nombres sur cet intervalle. Autrement dit, quelque soient les réels et appartenant à I, si alors f ( a ) ≥ f ( b ) .
Croissance : Une fonction est croissante sur un intervalle I si et seulement si : pour tout a et b de I, Si a < b alors f(a) < f(b). Décroissance : Une fonction est décroissante sur un intervalle I si et seulement si : pour tout a et b de I, Si a < b alors f(a) > f(b).
si f ' est positive sur I la fonction est croissante sur I. si f ' est négative sur I la fonction est décroissante sur I. Remarques : pour le vocabulaire mathématique, "positive" signifie "positive ou nulle" (et "négative" veut dire "négative ou nulle").
On appelle fonction affine toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x + b où a et b sont des constantes. Ce nombre a est appelé coefficient directeur de la fonction affine f. Ce nombre b est appelé ordonnée à l'origine de la fonction affine f.
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Le sens de variation d'une fonction affine dépend du signe du coefficient directeur $a$. Ce coefficient directeur représente la « pente » de la droite représentative de $f$. Si $a > 0$ la fonction est croissante, la droite « monte ». Si $a=0$ la fonction est constante, la droite est horizontale.
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Une fonction est affine si elle peut s'écrire sous la forme f(x) = ax + b, où a et b sont des nombres réels. Si b = 0, alors f est une fonction linéaire. Si a = 0, alors f est une fonction constante. La représentation graphique d'une fonction affine est une droite.
La fonction 𝑓 est strictement croissante sur les intervalles où 𝑓 ′ ( 𝑥 ) > 0 et est strictement décroissante sur les intervalles où 𝑓 ′ ( 𝑥 ) < 0 . Par conséquent, 𝑓 est strictement croissante sur l'intervalle ] 0 ; 1 [ et est strictement décroissante sur les intervalles ] − ∞ ; 0 [ et ] 1 ; + ∞ [ .
La fonction racine carrée est strictement croissante sur \mathbb { R } ^ { + } donc si 0 \leqslant a \lt b , alors \sqrt { a } \lt \sqrt { b } l'ordre est conservé.
La fonction carré, qui à tout nombre réel associe son carré, est décroissante pour les valeurs négatives de la variable et croissante pour les valeurs positives. Le passage au carré inverse l'ordre si les nombres sont négatifs et conserve l'ordre si les nombres sont positifs.