Le nombre Pi étudié au collège en mathématique en classe de sixième.
Le nombre Pi est utilisé depuis l'Antiquité par les mathématiciens, d'abord pour résoudre des problèmes géométriques, puis dans le calcul intégral et enfin à l'ère informatique pour calculer toujours davantage de décimales de Pi.
Il existe un moyen mnémotechnique pour se souvenir des premières décimales avec ce vers, le nombre de lettres dans chaque mot donnant le chiffre correspondant : Que j'aime à faire apprendre un nombre utile aux sages. Immortel Archimède, artiste ingénieur, Qui de ton jugement peut priser la valeur ?
2- Mesurez la circonférence (périmètre) de votre cercle avec précision. 3- Mesurez aussi le diamètre du cercle. 4- Utilisez la formule de la circonférence (C= π*d) de laquelle vous déduirez Pi. Il est alors égal à la circonférence divisée par le diamètre : π=C/d.
C'est Archimède, un mathématicien grec vivant à Syracuse, qui le premier démontre vers 250 avant J. -C. les formules du cercle et que c'est bien la même constante Pi qui intervient dans le calcul de la circonférence et celui de la surface.
Pi est un nombre irrationnel (c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique). Les premières sont : 3,14159265358979323846264338327950288419716939937510582. Dans la pratique, on utilise 3,14 mais il est souvent aisé de retenir 22 septièmes ou racine de 10 pour valeur approchée de Pi.
Il s'agit du rapport entre la circonférence d'un cercle et son diamètre ou entre la superficie d'un cercle et le carré de son rayon. 3,14 est une approximation, dans la réalité c'est 3,14159265358… Une suite infinie de décimales qui a valu au nombre Pi une salle entière au Palais de la découverte.
Pi (π) est un nombre irrationnel, c'est-à-dire qu'il contient un nombre infini de chiffres après sa virgule. Les chiffres après la virgule sont des décimaux. Depuis, près de 4 000 ans, les mathématiciens ne cessent d'ajouter de nouvelles décimales.
Les recherches menées sur les nombres transcendants et irrationnels et en grande partie liées à Pi, apportent une réponse à la quadrature du cercle. Il est en effet impossible de construire à la règle et au compas, un carré dont la superficie serait égale à celle d'un cercle donné.
Note didactique. L'infini, noté ∞, n'est pas un nombre, mais un concept ou un phénomène. On peut, par exemple, dire que la valeur d'une variable x croît positivement en prenant des valeurs de plus en plus grandes; on dira alors que x tend vers l'infini.
C'est tout simplement le résultat de la division du périmètre d'un cercle par son diamètre. Ce rapport donne toujours le même nombre quelle que soit la taille du cercle. On dit que c'est une constante et on l'a appelé pi qu'on écrit avec la lettre grecque π.
Il a donné deux autres approximations de π : π ≈ 22/7 et π ≈ 355/113.
Le record actuel tient depuis le 21 octobre 2015: il est détenu par l'Indien Suresh Kumar Sharma, qui a récité 70.030 décimales du nombre pi en 17 heures et 14 minutes.
La méthode de Monte-Carlo pour calculer π se fonde sur un principe très simple : la surface d'un disque de rayon r est πr2. Elle permet d'obtenir expérimentalement quelques décimales de π.
Connu depuis la plus haute Antiquité mais de manière empirique, étudié par Pythagore au 6e siècle avant J. -C., le nombre d'or ne sera théorisé par écrit que trois siècles plus tard par le mathématicien grec Euclide. Euclide étudie les polygones réguliers.
Les dix derniers chiffres de Pi sont «7817924264», indique la HES qui indique qu'elle ne dévoilera le numéro complet qu'une fois le record aura été homologué par le Livre Guinness des records.
Le nombre Pi est étudié depuis très longtemps (lire ci-dessous), mais garde encore quelques mystères… Par exemple, si les mathématiciens pensent qu'il est un nombre-univers, ils sont bien incapables de le démontrer !
C'est pourquoi les Babyloniens, puis les Egyptiens, apparaissent comme les premiers utilisateurs de mathématiques.
Il fait partie de l'ensemble des nombres rationnels. √2 et π sont des exemples de nombres qui ne peuvent pas s'exprimer sous la forme ab et dont le développement décimal est infini et non-périodique. Il ne font donc pas partie de l'ensemble des nombres rationnels.
Pour réguler le trafic,on peut par exemple jouer sur la vitesse maximale autorisée, même de façon ponctuelle. Sur un axe à plusieurs points d'accès, on peut installer des feux pour faire varier la densité des nouveaux arrivants. Le bon sens pourrait inciter à rajouter des routes.
Représenté par la lettre grecque"π", Pi est ce qu'on appelle un nombre irrationnel. C'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction comprenant deux nombres entiers. Si ce symbole existe depuis l'époque babylonienne, c'est le mathématicien grec Archimède qui, en 250 avant J.
Origine de la formule 2πr
La formule 2πr vient de la définition du cercle comme étant l'ensemble de tous les points situés à une distance égale du centre. Si l'on considère un cercle de rayon r, il est possible de diviser la circonférence en autant de sections qu'on le souhaite, chacune ayant une longueur égale à r.
Le cercle entier est décrit pour la première fois par Gemma Frisius (1508-1555), en 1533, dans son ouvrage Libellus de locorum describendorum ratione. Muni d'une boussole, cet instrument sera plus tard appelé « cercle hollandais » par erreur par le colonel Laussedat qui décrit Gemma Frisius (1508-1555) aux Hollandais.
Le périmètre P d'un cercle de rayon r s'écrit : P = 2 × π × r. La touche π de la calculatrice nous donne : 3,141 592… On donne du périmètre une valeur approchée, ici la valeur arrondie au centième : 17,59 cm. Inversement, on peut calculer le diamètre d'un cercle (ou son rayon), connaissant son périmètre.