Une fonction linéaire est une fonction simple des mathématiques élémentaires, qui traduit la proportionnalité et qui se traduit en langage mathématique par les termes f(x) = ax. Exemple : f(x)=2x, f(5)=2*5 = 10 on remplace x par 5.
Une fonction linéaire est une fonction qui, à tout nombre x, associe le nombre ax , où a étant un nombre quelconque donné. a est appelé le coefficient de la fonction linéaire. On notera cette fonction de manière équivalente : ou f : x → ax ou f(x) = ax.
Si b = 0, c'est-à-dire, f(x) = ax ; alors f est appelée fonction linéaire. Si a = 0, c'est-à-dire, f(x) = b ; alors f est une fonction constante. Si a = 0, c'est-à-dire, f(x) = b ; alors f est une fonction constante.
Une fonction linéaire est une fonction « f » qui peut s'écrire sous la forme f (x)=ax où « a » est un nombre connu. « a » est le coefficient directeur de la fonction linéaire f . Exemples : a) g(x)=3 x , g est une fonction linéaire de coefficient directeur 3.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
On appelle fonction linéaire toute fonction f dont l'expression peut s'écrire sous la forme f (x) = a x où a est une constante. * On considère deux grandeurs x et y telles que : y soit proportionnelle à x. En conséquence, il existe un nombre a tel que : y = a x.
Relatif à ce qui n'est pas linéaire, c'est-à-dire dont la variation ne peut pas être représentée par une ligne droite. Exemple : Une fonction non-linéaire n'est pas une fonction du premier degré.
On écrit f : x → ax. Cela signifie : f est la fonction linéaire qui, à tout nombre x, associe le nombre ax, appelé image de x par la fonction f.
La représentation graphique d'une fonction linéaire f : x → ax est une droite passant par l'origine et d'équation y = ax. Définition : a est le coefficient directeur de la droite d.
Tout d'abord une fonction linéaire a pour équation y = ax alors qu'une affine est y = ax + b. Une fonction linéaire est donc un cas particulier d'une affine, en prenant b = 0. Graphiquement, la droite linéaire passe par l'origine contrairement à l'affine. Ce qui suit est donc valable pour les deux types de fonctions.
Pour toute fonction linéaire f, la représentation graphique de f est une droite qui passe par l'origine du repère. Inversement, pour toute droite d qui passe par l'origine du repère et qui n'est pas l'axe des ordonnées, d est la représentation graphique d'une fonction linéaire.
Une fonction affine est une fonction qui, à toute valeur x définie sur ℝ - l'échelle des nombres réels -, associe le nombre ax + b, a et b étant des nombres relatifs donnés.
Définition : Une fonction affine est une fonction qui peut s'écrire sous la forme : f:x ↦ ax + b, où a et b sont deux nombres réels quelconques. Remarque : toute fonction linéaire est une fonction affine telle que b = 0. La fonction f :x ↦ 3x² + 7 n'est pas une fonction affine.
Un système non linéaire est un système qui n'est pas linéaire, c'est-à-dire qui ne peut pas être décrit par des équations différentielles linéaires à coefficients constants.
Il s'agit d'équations différentielles de Bernoulli, c'est-à-dire d'équations de la forme y′+p(x)y=q(x)yβ. y ′ + p ( x ) y = q ( x ) y β . On les résout par le changement de fonction inconnue z=y1−β. z = y 1 − β .
La fonction OU est couramment utilisée pour développer l'utilité d'autres fonctions qui effectuent des tests logiques. Par exemple, la fonction SI effectue un test logique, puis renvoie une valeur si le résultat du test est VRAI, et une autre valeur si le résultat du test est FAUX.
La correspondance qui à tout nombre positif fait correspondre les deux nombres dont il est le carré n'est pas une fonction. En effet, il n'y a pas unicité. Par exemple 4 est le carré de 2 et - 2. L'ensemble de définition d'une fonction est l'ensemble des nombres réels pour lesquels on peut calculer une unique image.
Une fonction est un processus (une machine) qui à un nombre associe un unique nombre. Si on appelle f la fonction et x le nombre de départ, alors : x est la variable ; f ( x ) f(x) f(x) est le nombre associé à x par la fonction f.
Une fonction affine est toujours associée à une formule de type f(x) = ax + b, pour déterminer cette formule il faut donc trouver la valeur de "a" et celle "b".
Un cas particulier des fonctions affines est lorsque l'ordonnée à l'origine est nulle, on obtient alors une fonction linéaire. Les fonctions constantes et linéaires sont des exemples de fonctions affines. Les fonctions affines sont elles-mêmes des exemples de fonctions polynomiales de degré inférieur ou égal à 1.
On dira qu'une fonction f(x) est positive sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont supérieures ou égales à 0 (positives). On dira qu'une fonction f(x) est négative sur un intervalle donné en x si, sur cet intervalle, les valeurs de f(x) sont inférieures ou égales à 0 (négatives).
Méthodes • Si on connaît un nombre et son image par une fonction linéaire f , on obtient son coefficient en divisant l'image par son antécédent. Par exemple : si f (4 5)=– 2 5 alors a= – 2 5 4 5 =– 2 5 × 5 4 =– 2×5 5×2×2 =– 1 2 .
Le coefficient directeur d'une droite (AB) non parallèle à l'axe des ordonnées est égal à xB−xAyB−yA.