Quand Est-ce qu'une fonction est dérivable ?

Interrogée par: Jeannine Bouchet  |  Dernière mise à jour: 14. November 2024
Notation: 4.3 sur 5 (28 évaluations)

Une fonction réelle d'une variable réelle est dérivable en un point a quand elle admet une dérivée finie en a, c'est-à-dire, intuitivement, quand elle peut être approchée de manière assez fine par une fonction affine au voisinage de a.

Comment savoir si une fonction est dérivable ?

La fonction f:I→R f : I → R est dérivable en a∈I a ∈ I si le taux d'accroissement f(x)−f(a)x−a f ( x ) − f ( a ) x − a admet une limite quand x tend vers a .

Comment déterminer si une fonction est dérivable ?

On dit qu'une fonction est dérivable en 𝑥 = 𝑥  si ces limites existent. Si seule la limite à gauche ou à droite existe, alors on dit que la fonction est dérivable en 𝑥 = 𝑥  à gauche ou à droite respectivement.

Quand une fonction n'est pas dérivable ?

Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.

Comment justifier dérivabilité ?

Parfois, la fonction est définie par prolongement par continuité en ce point. Pour justifier de la dérivabilité en ce point, on revient alors à la définition, en calculant le taux d'accroissement et en vérifiant s'il admet une limite, ou alors, si on connait, on applique le théorème de prolongement d'une dérivée.

Que signifie qu'une fonction est dérivable en un point ?

Trouvé 41 questions connexes

Comment montrer qu'une fonction est continue et dérivable ?

Théorème Soit f une fonction définie sur un intervalle I et a ∈ I. Si f est dérivable en a Alors f est continue en a. f(x) = f(a), et donc que f est donc continue en a.

Comment savoir si une fonction est dérivable graphiquement ?

Sommaire. On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.

Est-ce que la valeur absolue est dérivable en 0 ?

La fonction valeur absolue n'est pas dérivable en 0.

Comment calculer la dérivée d'un point ?

On suppose la fonction f dérivable en a. Elle admet donc une tangente au point A d'abscisse a, d'équation y = mx + p. l'équation : f(a) = f'(a) a + b d'où on tire b = f(a) – f'(a) a.

Comment calculer la dérivée d'une fraction ?

dérivée d'une fraction

La dérivée d'une "fraction" est: la dérivée du numérateur • le dénominateur – le numérateur • la dérivée du dénominateur, le tout divisé par le carré du dénominateur.

Comment calculer la fonction dérivée d'une fonction ?

La fonction qui à tout x de I associe le nombre dérivé de f en x est appelée fonction dérivée de f et se note f′. Soit n un entier naturel non nul. Soit f la fonction définie sur par : f(x) = xn. Alors la fonction dérivée de f est définie par : f′(x) = nxn1.

Qu'est-ce que ça veut dire dérivable ?

Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)

Pourquoi la valeur absolue n'est pas dérivable en 0 ?

la limite en 0 de n'existe pas. On ne peut alors parler ni de nombre dérivé, ni de tangente en . Les limites à droite et à gauche en 0 du rapport n'étant pas égales, on ne peut parler de limite en 0. La fonction valeur absolue n'est donc pas dérivable en 0.

Comment étudier la Dérivabilité d'une fonction en un point ?

(1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a. (3) f est dérivable en b si et seulement si f est dérivable `a gauche en b.

Pourquoi calculer la dérivée d'une fonction ?

Lorsqu'une fonction n'est pas linéaire, sa pente peut varier d'un point à l'autre. Il nous faut donc introduire la notion de dérivée qui permet d'obtenir la pente en tout point de ces fonctions non linéaires.

Comment se fait la dérivation ?

​La dérivation consiste à former un nouveau mot en y ajoutant un préfixe et/ou un suffixe. Il s'agit d'ajouter une ou des extensions à un mot pour en modifier le sens.

Pourquoi la fonction racine n'est pas dérivable en 0 ?

Oui. Si on note f la fonction RAC. On a lim(f) =f(0) quand x → 0. Mais f n'est pas dérivable en 0 car f '(x) = 1 / (2RAC(x)) n'est pas définie en 0 (tangente verticale).

Comment calculer la dérivée d'une fonction valeur absolue ?

Dérivée : la fonction valeur absolue est dérivable partout sauf pour x=0. x = 0. Soit la fonction f telle que f(x)=|x|, f ( x ) = | x | , alors pour tout x∈]−∞;0[, x ∈ ] − ∞ ; 0 [ , sa dérivée s'écrit f′(x)=−1 f ′ ( x ) = − 1 et pour tout x∈]0;+∞[ x ∈ ] 0 ; + ∞ [ nous avons f′(x)=1.

Quelle est la valeur absolue de 5 ?

la valeur absolue de 7 est 7 ; la valeur absolue de –5 est 5, c'est-à-dire l'opposé de –5.

Est-ce que la dérivée est continue ?

On montre que si une fonction est dérivable en un point, elle est également continue en ce point.

Comment on calcule le taux d'accroissement ?

Si f est une fonction qui va de [a,b] dans R et si x0∈[a,b], x 0 ∈ [ a , b ] , le taux d'accroissement de f en x0 est la fonction définie, là où c'est possible, par Tx0(h)=f(x0+h)−f(x0)h. T x 0 ( h ) = f ( x 0 + h ) − f ( x 0 ) h .

Pourquoi toute fonction dérivable est continue ?

Pourquoi une fonction dérivable en un point y est nécessairement continue ? - Quora. Très intuitivement si une fonction est dérivable en un réel a alors elle admet en ce réel une tangente unique t au graphe de la fonction. La tangente t est une droite. Elle est donc partout continue et en particulier en a.

Comment savoir si f est continue en 0 ?

Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure.

Est-ce que la fonction racine carrée est dérivable ?

La fonction racine carrée n'est pas dérivable dans son ensemble de définition. Dérivable pour tous réels strictement positifs : sauf zéro.

Quel est le dérivé de 2x ?

Exemple d'utilisation : pour définie sur , sa fonction dérivée est car la dérivée de x2 est 2x (comme on a 3x2, on multiplie 2x par 3) et la dérivée de x est 1 (que l'on multiplie par -2).

Article précédent
Où mettre son portable quand on dort ?