Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Les tests non-paramétriques ne se basent pas sur des distributions statistiques. Ils peuvent donc être utilisés même si les conditions de validité des tests paramétriques ne sont pas vérifiées. Les tests paramétriques ont souvent des tests non-paramétriques équivalents.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Lorsque le signe d'une différence attendue entre deux moyennes est connu, il est possible de se concentrer exclusivement sur le côté attendu sous l'hypothèse alternative. Dans ce cas, nous choisissons une hypothèse alternative unilatérale avec le côté souhaité.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
En statistiques, le test de Kolmogorov-Smirnov est un test d'hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi.
Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon. Tous ces tests sont dits non paramétriques car ils ne nécessitent pas d'estimation de la moyenne et de la variance.
La procédure Test U de Mann-Whitney utilise le rang de chaque observation pour tester si les groupes sont issus de la même population. Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
Test de la médiane à 1 échantillon (test du signe et test de Wilcoxon) Test de la médiane à 2 échantillons (test de Mann-Whitney) Analyse de la variance (tests de Kruskal-Wallis, de la médiane de Mood et de Friedman) Test sur le caractère aléatoire (test des suites)
Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche). Si vous avez plus de deux groupes dans votre étude, comme l'ethnicité (africaine, asiatique, blanche, etc.)
Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.
Il existe deux stratégies pour prendre une décision en ce qui concerne un test d'hypothèse : la première stratégie fixe a priori la valeur du seuil de signification a et la seconde établit la valeur de la probabilité critique aobs a posteriori. et l'hypothèse H1 est acceptée.
Le test t est un test d'hypothèse statistique utilisé pour comparer les moyennes de deux groupes de population. L'ANOVA est une technique d'observation utilisée pour comparer les moyennes de plus de deux groupes de population. Les tests t sont utilisés à des fins de test d'hypothèses pures.
Allez au menu Tests paramétriques / Tests t et z pour deux échantillons. Dans l'onglet Général faites les mêmes sélections de variable que pour le test précédent. Sélectionnez l'option Test t de Student comme nous ne connaissons pas la variance des deux populations.
L'analyse de variance permet simplement de répondre à la question de savoir si tous les échantillons suivent une même loi normale. Dans le cas où l'on rejette l'hypothèse nulle, cette analyse ne permet pas de savoir quels sont les échantillons qui s'écartent de cette loi.
Dit plus simplement : si votre Khi2 se situe à gauche de la colonne 0,05, vous ne pouvez pas interpréter votre tableau sans prendre de risques. Remarquez que plus le degré de liberté diminue, plus les khi2 théoriques diminue.
Pour tester la significativité du modèle, nous avons 2 niveaux : Un test global, obtenu grâce à une statistique de Fisher. En pratique, l'hypothèse Ho de ce test est souvent rejetée, le modèle est donc souvent significatif globalement. Un test de significativité sur chacune des variables explicatives prises une à une.
Si la répartition de l'échantillon ou de la distribution est symétrique autour de la moyenne alors le coefficient est nul. Si la valeur est positive, l'étalement est à droite (asymétrique gauche), en revanche si elle est négative alors l'étalement est à gauche (asymétrie droite).
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Les formulations pour l'hypoth`ese alternative H1 sont : 1. H0 : µ = µ0 (ou µ ≥ µ0) et 2. H0 : µ = µ0 (ou µ ≤ µ0) H1 : µ<µ0 H1 : µ>µ0 (unilatéral `a gauche). (unilatéral `a droite).
Le test bilatéral offre la possibilité de conclure à une différence quel que soit son sens (positive ou négative, effet bénéfique ou effet délétère). Un test unilatéral ne recherche la différence que dans un seul sens (supériorité le plus souvent pour un essai thérapeutique).