L'entrée en activité et la production du premier plasma est prévue pour décembre 2025 et la création du premier plasma de deutérium-tritium est prévue pour 2035.
La huitième bobine de champ toroïdal en provenance de l'Europe, TF14, est arrivée sur le site ITER le 8 juillet 2022.
Bombardée de neutrons, la couverture en béryllium du tokamak d'Iter va se désagréger rapidement — la durée de vie de ce métal dans un réacteur de fusion serait de cinq à dix ans 11. Il faudra non seulement remplacer ses modules régulièrement, mais évacuer après chaque expérience les poussières de béryllium.
Selon le calendrier officiel, il faudra sans doute attendre 2040 pour maîtriser le plasma en combustion, seul à même de produire les réactions en chaîne proches de celles du soleil voulues par les scientifiques.
L'installation ITER est actuellement en cours de construction en France, dans le département des Bouches-du-Rhône.
Selon le calendrier officiel d'ITER, les premiers essais interviendront vers 2025 et seront suivis, s'ils s'avèrent concluants, de nouveaux essais dans les décennies qui suivent. En somme, pas de projets de fusion nucléaire avant 2050, dans le meilleur des cas.
La difficulté réside dans l'énergie cinétique très élevée de ces neutrons : 14,1 MeV soit environ 7 fois plus que celle des neutrons « rapides » produits par les réactions de fission.
La fusion nucléaire n'utilise pas de matières fissiles comme l'uranium et le plutonium (le tritium radioactif n'est pas un matériau fissile ni fissionnable). De plus, un réacteur de fusion ne contient pas d'éléments susceptibles d'être utilisés pour fabriquer des armes nucléaires. Pas de fusion du cœur possible.
Incendie, risque sismique, étanchéité des composants... Plusieurs dangers pourraient solder le projet Iter par un échec. L'avenir de la fusion nucléaire en serait quand même protégé, tant les États et les magnats de l'industrie de la tech ou de l'énergie financent des recherches et des projets.
C'est pourquoi les recherches en fusion se concentrent majoritairement sur la réaction entre deux isotopes de l'hydrogène : le deutérium et le tritium, étant la plus « facile » à réaliser bien qu'elle nécessite tout de même d'atteindre une température d'environ 150 millions de degrés.
On soulignera que la fusion nucléaire ne rejette pas de dioxyde de carbone ni d'autres gaz à effet de serre dans l'atmosphère et qu'avec la fission nucléaire, elle pourrait jouer un rôle dans l'atténuation du changement climatique, en tant que source d'énergie bas carbone.
Fin mai 2021, le tokamak supraconducteur expérimental avancé chinois connu sous le nom d'East - pour Experimental Advanced Superconducting Tokamak - avait ainsi pu maintenir une température de quelque 120 millions de degrés Celsius pendant 100 secondes, et même 160 millions de degrés pendant 20 secondes.
L'énergie libérée par ce phénomène est dix fois supérieure à celle libérée lors de la fission. D'autre part, la fusion nucléaire ne produit pas de déchets radioactifs puisque les produits de fusion sont stables. L'énergie des étoiles provient de cycles de réactions de fusion nucléaires.
En utilisant la technique du confinement inertiel, ils sont parvenus à générer une réaction de fusion nucléaire de l'ordre de 1,35 mégajoules, ce qui représente un rendement de 70%.
Le Comité Industriel ITER (C2I) œuvre pour optimiser les retombées économiques sur la région en développant les relations entre ITER et le tissu industriel local, particulièrement lors des phases de construction et d'assemblage.
Le 15 septembre 2022, le Conseil ITER a nommé Pietro Barabaschi le quatrième* directeur général d'ITER Organization. Le nouveau directeur général prendra ses fonctions au mois d'octobre.
D'après la roadmap de l'Union européenne, ITER sera suivi par « DEMO », un démonstrateur de la faisabilité économique de la fusion. Des projets concurrents sont en cours de développement, aux Etats-Unis, au Canada, au Royaume-Uni et en Chine. En cas de réussite, la fusion pourrait changer le cours de la civilisation.
Le processus de fusion nucléaire ne peut avoir lieu que dans des conditions de température et de pression particulières. A titre d'exemple, au cœur du Soleil, la pression est égale à 200 milliards de fois la pression atmosphérique terrestre et la température centrale atteint environ 15 millions de degrés.
Aucun danger, buvez à volonté, rassurent les autorités. On peut boire au robinet sans modération: les autorités ont écarté toute inquiétude sur la qualité de l'eau potable, suite à un communiqué alarmiste d'une association dénonçant une "contamination" radioactive au tritium suivi de rumeurs en région parisienne.
La fusion nucléaire permet à partir de deux atomes très légers (par exemple le deutérium et le tritium) de créer des atomes plus lourds. La réaction ne pourra jamais s'emballer car ce n'est pas une réaction en chaîne. La moindre poussière dans le tokamak stoppera la réaction.
Sur Terre, pour récupérer de l'énergie, les scientifiques tentent d'utiliser la fusion de deutérium et de tritium, deux isotopes de l'hydrogène (noyaux contenant un proton et un ou deux neutrons). Cette réaction donne elle aussi naissance à un noyau d'hélium très chaud, et libère un neutron de grande énergie.
La chaleur produite par ces réactions de fission va servir à produire de la vapeur, laquelle va faire tourner une turbine électrique. Ce point est commun à toutes les centrales. Pour arrêter le réacteur, c'est-à-dire pour stopper la réaction en chaîne, il faut agir sur la production des neutrons, ou les capturer.
La fusion nucléaire, un graal énergétique
de déchets de haute activité à vie longue. qui permet d'obtenir le gain énergétique le plus élevé aux températures les plus basses. d'autres encore. À masse égale, la fusion d'atomes légers libère 1 000 000 de fois plus d'énergie que la plus puissante des réactions chimiques.
Un tokamak est une machine capable de créer et confiner un plasma chaud à près de 150 millions de degrés, dans une cage magnétique, en forme d'anneau. C'est en quelque sorte un four qui permet de créer un plasma et de le maintenir en son cœur grâce à des champs magnétiques très puissants.
[1/3] Le futur réacteur de fusion nucléaire Iter, dans les Bouches-du-Rhône, consommera autant d'énergie qu'il en produira. Ce projet immense est aussi bien plus coûteux que prévu : 44 milliards d'euros.