L'analyse de la variance (ANOVA) est très utilisée en statistique et dans le domaine des études marketing. Cette méthode analytique puissante sert à mettre en avant des différences ou des dépendances entre plusieurs groupes statistiques.
L'ANOVA univariée ne s'utilise que lorsque l'on étudie un seul facteur et une seule variable dépendante. Pour comparer les moyennes de trois groupes ou plus, elle indique si au moins une paire de moyennes est significativement différente, mais elle n'indique pas laquelle.
La two-way anova nous permet ainsi d'évaluer l'effet principale de chacune des variables indépendantes mais aussi d'évaluer s'il existe une interaction entre elles. L'ANOVA (One-way ou two-way) nous permet donc de tester l'existence d'une différence significative entre deux ou plusieurs groupes.
En cela, la MANOVA est donc une généralisation de l'analyse de la variance (ANOVA), qui est univariée, c'est-à-dire qui ne porte que sur une seule variable dépendante. La MANOVA est aussi utilisée pour identifier des interactions entre les variables dépendantes et entre les variables indépendantes.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
Il existe un autre test non paramétrique permettant de comparer plus de 2 échantillons et qui est en fait la généralisation du test de Mann-Whitney. Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives.
L'analyse d'une variable commence par son tri à plat qui est en fait le tableau de la distribution de ses données triées selon ses différentes valeurs : cela consiste tout simplement à dénombrer les résultats obtenus.
La variance est un concept statistique qui nous permet de mieux comprendre les données. D'un point de vue intuitif, elle aide à comprendre la notion de dispersion. D'un point de vue plus formel, elle permet de multiples applications dans le domaine des statistiques.
Contrairement à l'étendue et à l'écart interquartile, la variance est une mesure qui permet de tenir compte de la dispersion de toutes les valeurs d'un ensemble de données. C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance.
Paramétrer une ANOVA à mesures répétées
Une fois XLSTAT lancé, choisissez la commande XLSTAT / Modélisation / ANOVA à mesures répétées ou cliquez sur le bouton ANOVA à mesures répétées de la barre d'outils Modélisation. Une fois le bouton cliqué, la boîte de dialogue correspondant à l'ANOVA à mesures répétées apparaît.
Un test de l'égalité des variances permet de vérifier l'égalité des variances entre des populations ou des niveaux de facteurs.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Elle peut être estimée à l'aide d'un échantillon et de la moyenne empirique ou déterminée grâce à l'espérance si celle-ci est connue. La variance apparait comme un cas particulier de covariance.
La variance expliquée est une mesure du lien entre le facteur X et la mesure numérique Y , pour apprécier comment Y dépend du fait d'appartenir à une sous-population ou à une autre.
Plus l'écart-type est grand, plus les valeurs sont dispersées autour de la moyenne ; plus l'écart-type est petit, plus les valeurs sont concentrées autour de la moyenne. Le carré de l'écart-type est la variance ; la variance est aussi un indicateur de dispersion.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
- Si la variance est nulle, cela signifie que la moyenne des carrés des écarts par rapport à la moyenne est nulle et donc que la variable aléatoire est une constante.
On démontre que V= ( (Σ x²) / N ) - μ². Cette formule est plus simple à appliquer si on calcule la variance à la main. Créé par Sal Khan. Les discussions ne sont pas disponibles pour le moment.
Comment calculer l'écart-type
1 - On calcule la moyenne arithmétique de la série. 2 - On calcule le carré de l'écart à la moyenne de chacune des valeurs de la série. 3 - On calcule la somme des valeurs obtenues. 4 - On divise par l'effectif de la série.
Les variables quantitatives correspondent à des informations que l'on peut mesurer, compter. Cela peut être par exemple : la taille, le poids, l'âge, le nombre d'enfants, etc. Les variables qualitatives correspondent à des informations que l'on ne peut pas mesurer, comme le sexe ou la couleur des cheveux.
On distingue ainsi classiquement trois types de caractères observables, ou encore de variables : les variables nominales, les variables ordinales et les variables métriques.