Théorème : L'intégrale sur un segment d'une fonction continue de signe constant est nulle si et seulement si cette fonction est nulle. Proposition : Soit f:[−a,a]→C f : [ − a , a ] → C une fonction continue par morceaux.
En mathématiques, une fonction nulle est une fonction constante dont l'image est zéro. Elle possède de nombreuses propriétés et intervient dans de nombreux domaines des mathématiques. Elle est souvent utilisée comme exemple ou contre-exemple trivial.
Comment justifier l'existence d'une intégrale ? L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
Théorème (théorème fondamental du calcul intégral) : Si f est une fonction continue et positive sur [a,b] , alors la fonction F définie sur [a,b] par F(x)=∫xaf(t)dt F ( x ) = ∫ a x f ( t ) d t est dérivable sur [a,b] , et a pour dérivée f .
On retiendra qu'une intégrale peut être positive ou négative mais qu'une aire, elle, est toujours positive.
Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.
Si la fonction est positive sur l'intervalle d'intégration, l'intégrale est positive et donc I_{n+1}-I_{n} est positif. Si la fonction est négative sur l'intervalle d'intégration, l'intégrale est négative et donc I_{n+1}-I_{n} est négatif.
Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.
Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h).
Si la courbe passe au-dessus et en-dessous de l'axe des 𝑥 dans l'intervalle [ 𝑎 ; 𝑏 ] , alors son intégrale définie est la différence entre l'aire au-dessus de l'axe des 𝑥 et l'aire sous l'axe des 𝑥 , dans l'intervalle [ 𝑎 ; 𝑏 ] .
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Qu'appelle-t-on une intégrale impropre ? Si sur un certain intervalle le domaine sous la courbe de la fonction est illimité, alors l'intégrale de sur cet intervalle est dite impropre. C'est le cas si au moins l'une des bornes d'intégration est ou .
Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.
Si pour une valeur donnée de x, vous trouvez f(x) != 0, vous avez démontré que f(x) n'est pas la fonction nulle, mais dans le cas contraire, c'est moins évident.
Dire que f n'est pas identiquement nulle sur I signifie que la négation de ce qui précède est vraie, i.e.\ qu'il existe x dans I tel que f(x)≠0.
3) La fonction nulle est croissante mais n'est pas strictement croissante. 1) "une fonction qui est croissante ou décroissante sur I" est la définition de fonction monotone.
Il s'agit en fait d'une propriété générale : une fonction n'est pas dérivable aux points où elle n'est pas continue.
Exemple 1.7 (Valeur absolue)
Soit f la fonction « valeur absolue » : f (x) = |x|. f (x)−f (0) x =−1. Ainsi f est dérivable à droite et à gauche en 0 : fd (0)=+1 et fg (0) = −1, mais fg (0) = fd (0) donc f n'est pas dérivable en 0.
Exemple. Soit f une fonction de la variable réelle x définie par f ( x ) = 8 x + 32 . La fonction est définie pour tous les x tels que est positif ou nul et seulement pour ceux-ci. La quantité est positive ou nulle si et seulement si 8 x est supérieur ou égal à − 32 .
a) La fonction f admet une limite en x0 (c'est-`a-dire, f est continue en x0) si et seulement si elle admet f(x0) comme limite `a droite et `a gauche en x0. b) Si f admet des limites distinctes `a droite et `a gauche en x0, alors f n'admet pas de limite en x0.
Ainsi la fonction monotone définie par f : [ 0 , 1 ] → R , ∀ x ∈ [ 0 , 1 ] f ( x ) = 0 et f ( 1 ) = 1 est intégrable et son intégrale vaut de façon évidente .
Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
Ainsi, si a<b et que f(x)>=0 sur [a,b] alors l'intégrale de f entre a et b est positive, et si f(x)<=0 sur [a,b] alors l'intégrale de f entre a et b est négative.
Si la fonction f est impaire, sa courbe représentative est symétrique par rapport à l'origine. L'intégrale entre a et -a est nulle car l'aire comprise entre -a et 0 aura un signe moins alors que celle entre 0 et a aura la même valeur mais avec un signe +.