Pour analyser les paires d'échantillons spécifiques en vue de déterminer la dominance stochastique, on utilise parfois le test de Dunn, les tests de Mann-Whitney par paires sans correction de Bonferroni ou encore le test de Conover-Iman, plus puissant mais moins connu.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Etant une alternative non paramétrique à l'ANOVA sur mesures répétées, le test de Friedman doit être employé lorsque l'hypothèse de normalité des résidus n'est pas satisfaite. Cette situation se rencontre classiquement lorsque la variable réponse est un score, ou encore une variable ordinale comme un classement.
Le test de Kruskal-Wallis n'apporte pas de réponse à la question de savoir lequel des groupes diffère ; un test post-hoc est nécessaire à cet effet. À cette fin, le test de Dunn est le test non paramétrique approprié pour la comparaison multiple par paire.
Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).
Par exemple, si vous voulez comparer une moyenne observée à une valeur théorique : Vous souhaitez comparer la moyenne des notes en mathématiques d'une classe à la moyenne du pays ? Dans ce cas nous allons utiliser un test paramétrique car nous pouvons supposer que les données suivent une distribution normale.
Le test de Wilcoxon compare deux séries ou groupes de données d'une même variable quantitative ou semi-quantitative. Il s'applique lorsque nous ne pouvons pas utiliser le test T de Student car les conditions de normalité des données ne sont pas validées.
En statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches.
Le test de Bartlett peut être utilisé pour comparer deux variances ou plus. Ce test est sensible à la normalité des données. Autrement dit, si l'hypothèse de normalité des données semble fragile, on utilisera plutôt le test de Levene ou de Fisher.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Une approche utilisée dans R avec la fonction "fisher. test" calcule la valeur p en sommant les probabilités de toutes les tables ayant une probabilité inférieure ou égale à celle de la table observée. Le test permet de rejeter l'indépendance entre le sexe et le fait de faire un régime.
Vous pouvez utiliser le test exact de Fisher pour analyser un tableau de contingence 2 x 2 et vérifier si la variable de ligne et celle de colonne sont indépendantes (H 0 : la variable de ligne et celle de colonne sont indépendantes).
Interpréter les résultats: après avoir effectué le test de Wilcoxon, il est important d'interpréter les résultats.La valeur p indique la probabilité d'observer une différence aussi extrême que celle observée, en supposant que l'hypothèse nulle est vraie.Si la valeur p est inférieure au niveau de signification ( ...
Pour calculer le test de Wilcoxon pour deux échantillons dépendants, on calcule d'abord la différence entre les valeurs dépendantes. Une fois les différences calculées, les valeurs absolues des différences sont utilisées pour former les classements.
Si la valeur p du test de Levene est supérieure à 0,05, alors les variances ne sont pas significativement différentes les unes des autres (c'est-à-dire que l'hypothèse d'homogénéité de la variance est satisfaite).
Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
Dans le cas d'échantillons indépendants, le test de Mann-Whitney permet de comparer deux populations. Les deux séries de valeurs sont mélangées puis ordonnées par valeurs croissantes. On identifie alors les rangs des individus du premier groupe et on calcule la somme des rangs de ces individus.
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
Un des tests permettant de vérifier la normalité de la variable x est le test de Shapiro-Wilk. Il est appliquable pour des échantillons allant jusqu'à 50 valeurs. Il utilise le rapport de deux estimations de la variance.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
La mauvaise décision : On suppose qu'H0 est fausse alors qu'en réalité H0 est vraie : c'est le risque α. On suppose qu'H0 est vraie alors qu'en réalité H0 est fausse : c'est le risque β.
Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.
Un test d'hypothèse (ou test statistique) est une démarche qui a pour but de fournir une règle de décision permettant, sur la base de résultats d'échantillon, de faire un choix entre deux hypothèses statistiques.