Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible.
Les tests paramétriques, quand leur utilisation est justifiée, sont en général plus puissants que les tests non paramétriques. Les tests paramétriques reposent cependant sur l'hypothèse forte que l'échantillon considéré est tiré d'une population suivant une loi appartenant à une famille donnée.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.
Le test U de Mann-Whitney est donc le pendant non paramétrique du test t pour échantillons indépendants ; il est soumis à des hypothèses moins strictes que le test t. Par conséquent, le test U de Mann-Whitney est toujours utilisé lorsque la condition de distribution normale du test t n'est pas remplie.
Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente.
On peut utiliser ce test avec un échantillon unique pour vérifier si la distribution suit une loi spécifique, ou avec deux échantillons indépendants pour comparer deux distributions différentes. Si la valeur P est supérieure à un seuil de signification prédéfini, l'hypothèse nulle est vérifiée.
Tests non paramétriques
Pour statuer sur la significativité de l'écart de la médiane à la médiane théorique, il suffit donc de vérifier si la fréquence de 11 fois sur 14 est significativement différente de 50%. On observe que cet écart est limite.
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Les tests paramétriques sont des tests dont l'échantillon que nous étudions suit une certaine loi (loi normale par exemple) ou vérifie un certain nombre d'hypothèses (même variance entre les deux échantillons donnés). Ils sont plus puissants mais nécessitent un certain nombre d'hypothèses à vérifier.
Le Test de Wilcoxon est un test de comparaison de deux séries d'une même variable quantitative (même unité de mesure). C'est un Test non paramétrique, utilisé quand les conditions de normalité de la variable ne sont pas valides.
En statistique, le test de Wilcoxon-Mann-Whitney (ou test U de Mann-Whitney ou encore test de la somme des rangs de Wilcoxon) est un test statistique non paramétrique qui permet de tester l'hypothèse selon laquelle les distributions de chacun de deux groupes de données sont proches.
La fonction Test de Kruskal-Wallis permet de déterminer si les médianes de deux groupes ou plus diffèrent. Vos données doivent contenir un facteur de catégorie et une réponse continue, et les courbes de distribution des données de tous les groupes doivent être de forme similaire.
Les formulations pour l'hypoth`ese alternative H1 sont : 1. H0 : µ = µ0 (ou µ ≥ µ0) et 2. H0 : µ = µ0 (ou µ ≤ µ0) H1 : µ<µ0 H1 : µ>µ0 (unilatéral `a gauche).
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
La two-way anova nous permet ainsi d'évaluer l'effet principale de chacune des variables indépendantes mais aussi d'évaluer s'il existe une interaction entre elles. L'ANOVA (One-way ou two-way) nous permet donc de tester l'existence d'une différence significative entre deux ou plusieurs groupes.
Dans le cas d'échantillons indépendants, le test de Mann-Whitney permet de comparer deux populations. Les deux séries de valeurs sont mélangées puis ordonnées par valeurs croissantes. On identifie alors les rangs des individus du premier groupe et on calcule la somme des rangs de ces individus.
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Conditions d'application du test de Kruskal-Wallis
Pour calculer un test de Kruskal-Wallis, il suffit de disposer de plusieurs échantillons aléatoires indépendants présentant au moins des caractéristiques à échelle ordinale. Les variables ne doivent pas nécessairement satisfaire à une courbe de distribution.
Pour calculer le test de Wilcoxon pour deux échantillons dépendants, on calcule d'abord la différence entre les valeurs dépendantes. Une fois les différences calculées, les valeurs absolues des différences sont utilisées pour former les classements.
Le test de Shapiro-Wilk donne une probabilité de dépassement de 0.1831, supérieure à 0.05. L'hypothèse de normalité est donc tolérée. Le test de Shapiro-Wilk donne une probabilité de dépassement de 0.0009, inférieure à 0.05. L'hypothèse de normalité est donc rejetée.