Quand utiliser un test Parametrique ?

Interrogée par: Sébastien Leveque  |  Dernière mise à jour: 2. Februar 2025
Notation: 4.8 sur 5 (33 évaluations)

Test statistique utilisé lorsque la ou les variables utilisées suivent une distribution prédéterminée. À l'exception du cas où la ou les variables suivent une loi normale, les tests paramétriques requièrent des échantillons de taille importante (> 30 observations).

Quand utiliser test paramétrique ou non paramétrique ?

Les tests paramétriques, quand leur utilisation est justifiée, sont en général plus puissants que les tests non paramétriques. Les tests paramétriques reposent cependant sur l'hypothèse forte que l'échantillon considéré est tiré d'une population suivant une loi appartenant à une famille donnée.

Quelles sont les conditions à respecter pour les tests dits paramétriques ?

Les conditions d'application des tests paramétriques
  • La distribution normale ou gaussienne (appelé ainsi en raison de la cloche gaussienne) est la distribution théorique la plus étudiée. ...
  • L'échantillon n représente la taille de la population. ...
  • Ce test est une alternative pour comparer deux moyennes.

Quand utiliser un test statistique ?

A.

Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.

Quel test non parametrique choisir ?

Lorsque les échantillons peuvent être considérés indépendants, on applique le test de Mann et Whitney pour 2 échantillons, celui de Kruskal et Wallis pour un nombre quelconque d'échantillons. Lorsque on a affaire à deux échantillons appariés (c'est-à-dire non indépendants), on applique le test de Wilcoxon.

Data_pro_Ep 6: Les tests paramétriques et non paramétriques

Trouvé 37 questions connexes

Comment savoir si un test est paramétrique ?

Les tests paramétriques sont des tests dont l'échantillon que nous étudions suit une certaine loi (loi normale par exemple) ou vérifie un certain nombre d'hypothèses (même variance entre les deux échantillons donnés). Ils sont plus puissants mais nécessitent un certain nombre d'hypothèses à vérifier.

Quel test paramétrique choisir ?

Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.

Quand utiliser une ANOVA et un test t ?

Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.

Quand utiliser le test d'ANOVA ?

L'analyse de la variance (ANOVA) est très utilisée en statistique et dans le domaine des études marketing. Cette méthode analytique puissante sert à mettre en avant des différences ou des dépendances entre plusieurs groupes statistiques.

Quel test pour deux variables qualitatives ?

Le test du Chi2 consiste à mesurer l'écart entre une situation observée et une situation théorique et d'en déduire l'existence et l'intensité d'une liaison mathématique. Par exemple, en théorie il y a autant de chance d'obtenir « pile » que « face » au lancer d'une pièce de monnaie, en pratique il n'en est rien.

Comment choisir H0 et H1 ?

Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.

Quand faire un test de Kruskal-wallis ?

Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.

Pourquoi faire un test de normalité ?

En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.

Quel test de corrélation choisir ?

Les trois tests de corrélation les plus utilisés sont ceux de Spearman, Kendall et Pearson. Les deux premiers sont des tests non-paramétriques que l'on peut également appliquer sur des variables qualitatives ordinales.

Comment choisir un modèle statistique ?

Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.

Quand on rejette H0 ?

Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)

Pourquoi on fait ANOVA ?

L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.

Quand utiliser le test de Tukey ?

Il peut être utilisé dans le cadre d'une ANOVA ou bien sur des données brutes pour évaluer par exemple si des moyennes sont significativement différentes l'une de l'autre.

Quel est l'objectif de la statistique F dans un test ANOVA ?

Le test F est utilisé dans le processus d'ANOVA pour tester la différence entre les moyennes ou l'égalité de la variance. L'ANOVA sépare la variabilité intra-échantillon de la variabilité inter-échantillons. Le test F est le rapport de l'erreur quadratique moyenne de ces deux échantillons.

Pourquoi faire un test de Student ?

Le test de Student fait intervenir une statistique de test suivant une loi de Student : un type de loi de probabilité faisant intervenir la loi normale centrée réduite. Le test de Student permet de déterminer la probabilité que deux groupes de données soient différents.

Comment interpréter un test ANOVA ?

En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.

Quelle est la différence entre tests pour échantillons indépendants et appariés ?

Le test t apparié est conçu pour comparer ces deux groupes de résultats. Un test t non apparié, en revanche, compare les moyennes de deux groupes ou éléments indépendants.

Quand utiliser le test de McNemar ?

Le test de McNemar permet de déterminer si des proportions appariées sont différentes. Vous pouvez par exemple l'utiliser pour déterminer si un programme de formation à un effet sur la proportion de participants qui répondent correctement à une question.

Quelles sont les 5 étapes d'une étude statistique ?

Table des matières
  • Les données, l'information statistique et les statistiques.
  • Les sources de données.
  • Collecte et traitement des données.
  • Exploration des données.
  • Visualisation des données.

Comment s'appelle le test permettant de vérifier son hypothèse ?

Un test d'hypothèse (ou test statistique) est une démarche qui a pour but de fournir une règle de décision permettant, sur la base de résultats d'échantillon, de faire un choix entre deux hypothèses statistiques.

Article précédent
Quand la peur empêche de vivre ?