Si l'espace est rempli de vide, peut-il y avoir du son ? Sans matières, le bruit ne peut pas circuler. Oui mais, si l'on pourrait croire que le silence y règne en maître, cela ne signifie pas pour autant que les objets spatiaux tels que les trous noirs, planètes, étoiles, n'émettent aucune onde sonore.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
La relativité générale montre que le rayon de Schwarzschild d'un trou noir est proportionnel à sa masse, donc que le volume d'un trou noir est proportionnel au cube de sa masse.
Son attraction gravitationnelle crée un point super-dense dans l'espace et absorbe toute la matière située à proximité. Les trous noirs sont d'ailleurs surnommés les "entonnoirs à lumière" car ils absorbent également les photons.
On estime ainsi que les trous noirs résidus d'étoiles disparaîtront d'ici 1065 ans (le chiffre 1 suivi de 65 zéros), les trous noirs supermassifs dans 1090 ans et les plus massifs dans 10100 ans.
Comment le détecter s'il absorbe toute la matière (et la lumière) ? On ne voit pas directement le trou noir, mais bien sa « signature », marquée par des jets de gaz, un rayonnement électromagnétique et des éclairs de rayons gamma. De plus, avant d'être avalée, la matière qui est comprimée et chauffée se met à briller.
Un quasar est composé de trois grandes parties principales : le trou noir supermassif ,comportant la quasi-totalité de la masse du quasar (de quelques millions à quelques dizaines de milliards de fois la masse du Soleil).
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Un trou blanc, aussi appelé fontaine blanche, est un objet théorique susceptible d'exister au sens où il peut être décrit par les lois de la relativité générale, mais dont l'existence dans l'Univers est considérée comme hautement spéculative.
Les trous noirs stellaires sont très froids : leur température s'approche du zéro absolu (0 kelvin ou −273,15 degrés Celsius).
Le trou noir M87* a une masse de l'ordre de 6,5 × 109 masses solaires et un rayon de 19 milliards de kilomètres ; son diamètre est donc de 38 milliards de kilomètres, ou 35 heures-lumière ; comme il est situé à 53,5 millions d'années-lumière de la Terre, son diamètre apparent serait de 15,5 μas (microsecondes d'arc).
Ta question est difficile et simple à la fois. Elle est simple si l'on répond brièvement : "Il n'y a rien derrière l'univers. L'univers est l'ensemble. Il n'y a pas d'espace vide en dehors de l'univers."
Surnommé « la Licorne », cet étrange objet stellaire semble être le plus petit trou noir jamais découvert. Il pourrait aider les astrophysiciens à résoudre l'un des plus grands mystères de l'univers. À près de 1 500 années-lumière de la Terre, un petit trou noir orbite autour d'une étoile géante.
1783 : dans le cadre de la théorie corpusculaire de la lumière, John Michell énonce la première notion de trou noir newtonien (en se servant des lois de Newton de la gravitation).
Il faudrait comprimer le Soleil jusqu'à un rayon de trois kilomètres pour qu'il devienne un trou noir, et descendre jusqu'à neuf millimètres pour que la Terre subisse le même sort. De fait, plus un trou noir est petit, plus la compression nécessaire à sa création est importante.
La découverte de ce trou noir avait suscité un grand intérêt chez scientifiques et les médias. L'objet, situé à 1000 années-lumière du Système solaire, était considéré comme le trou noir le plus proche de la Terre. Cette place reste donc à celui de V616 de la Licorne, distant de 3300 années-lumière.
De fait, un trou noir comporte plusieurs couches. On trouve d'abord l'horizon des événements, connu sous le nom de point de non-retour, puis le disque d'accrétion. Il s'agit d'un énorme disque de poussière et de gaz tourbillonnant autour du trou noir.
Au centre de la plupart des galaxies, on trouve l'une des choses les plus étranges et les plus meurtrières de l'univers : un trou noir. La plupart des trous noirs, quelle que soit leur taille, apparaissent lorsqu'une étoile géante manque d'énergie. L'étoile implose et son centre s'effondre sous son propre poids.
On appelle « horizon cosmologique » la première lumière émise par le Big Bang il y a 13,82 milliards d'années.
Le rayonnement micro-onde du fond diffus cosmologique a été émis lors de la formation de l'hydrogène neutre. La matière a ensuite continué de s'agréger avec la formation des premières étoiles et, finalement, des galaxies, des quasars et des amas et superamas de galaxies.
Le moustique : incontestablement le plus dangereux
Le moustique est véritablement l'ennemi numéro 1 de l'homme car il tue à lui seul près de 750 000 personnes dans le monde chaque année. Ce n'est pas tant l'animal en soi qui tue que les virus qu'il transmet en piquant ses victimes.
« Les sursauts de luminosité observés offrent la confirmation tant attendue que l'objet situé au centre de notre galaxie est bel et bien un trou noir supermassif » indique l'ESO. Il s'agit des observations les plus détaillées de la matière se déplaçant à si grande proximité d'un trou noir actuellement.
La matière ne tombera pas directement en ligne droite sur l'étoile B en raison de la rotation du système sur lui-même et de l'inertie de la matière transférée. Elle adoptera alors plutôt une trajectoire en spirale qui l'amène à former un disque de matière autour de l'étoile B, formant ainsi un disque d'accrétion.
Notre univers pourrait bien se trouver dans un vaste trou noir. Remontons le temps : avant la venue de l'Homme, avant l'apparition de la Terre, avant la formation du soleil, avant la naissance des galaxies, avant toute lumière… il y a eu le Big Bang. C'était il y a 13,8 milliards d'années.