Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
0÷0 est une opération indéfinie! En effet, il est impossible de diviser un nombre par 0. Cependant, si on avait plutôt 0÷6 par exemple, alors le résultat serait 0. En bref, 0 peut être divisé par n'importe quel nombre, le résultat sera toujours 0, mais on ne peut diviser aucun nombre par 0, c'est simplement impossible!
La division par zéro donne l'infini. Cette convention a d'ailleurs été défendue par Louis Couturat dans son livre De l'infini mathématique. Cette convention est assez cohérente avec les règles de la droite réelle achevée, dans laquelle n'importe quel nombre, divisé par l'infini, donne 0.
Tout le monde divise 0 (y compris 0). Ce n'est pas pour autant qu'on peut diviser 0 par 0.
Dans l'ensemble des entiers naturels
On remarque alors que 1 divise tout entier naturel et que 0 est divisible par tout entier naturel.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Quels sont les diviseurs de zéro (0) ? Le nombre 0 a une infinité de diviseurs , car tous les nombres divisent 0 et le résultat vaut 0 (excepté pour 0 lui-même car la division par 0 n'a pas de sens, il est possible toutefois de dire que 0 est un multiple de 0 ).
Propriétés Exemples Un nombre entier est divisible par 2 : → Quand son chiffre des unités est 0,2, 4, 6 ou 8 et uniquement dans ce cas.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
A noter que l'inverse de 0 n'existe pas car il est impossible de diviser par 0 en mathématiques. En effet, la division par 0 ne représente rien car on ne peut pas diviser une partie par quelque chose qui n'existe pas.
Pour qu'un nombre soit divisible par 4, il faut qu'il soit divisible par 2 et encore par 2. e. Un nombre divisible par 6 est divisible par 3 et par 2.
Un nombre carré peut s'écrire sous la forme d'un produit de deux facteurs égaux. Exemple : 9 est un nombre carré car 9 possède 3 diviseurs : 1, 3, 9. Un nombres rectangle possède un nombre pair de diviseurs.
→ Diviser un nombre par 0,5, c'est donc Multiplier par l'inverse de un demi. L'inverse de c'est 2. → Diviser un nombre par 0,5 revient donc à Multiplier ce nombre par 2.
Zéro est le seul nombre entier qui ne possède qu'un seul multiple: lui-même (0). Zéro possède un seul multiple, mais il est le multiple de tous les nombres entiers.
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l'italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l'arabe ṣĭfr (صفر), le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d'une figure fermée simple : 0.
1) La notion de nombre premier ne concerne que les entiers naturels. Il est donc ici question de divisibilité dans ℕ . 2) 0 a une infinité de diviseurs donc il n'est pas premier. 3) 1 n'a qu'un seul diviseur, qui est lui-même donc 1 n'est pas premier.
Le vide n'existant pas selon Aristote, le nommer est sans intérêt voire faux. Ce sont les Babyloniens qui vont les premiers utiliser le zéro (vers le IIIe siècle après J. -C.), non pas comme un nombre ni même un chiffre, mais en tant que marqueur signifiant l'absence.
Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
Par convention et pour assurer la continuité de cette fonction exponentielle de base 2, la puissance zéro de 2 est prise égale à 1, c'est-à-dire que 20 = 1.
1 divise tous les nombres entiers et par conséquent, tous les nombres sont leurs propres multiples. Par exemple, 12 = 12 × 1 donc 1 divise 12 et 12 est un multiple de ... 12.
La divisibilité est une propriété qui indique qu'un nombre peut être entièrement divisé par un autre nombre, c'est-à-dire sans reste. 54÷6=9 reste 0 54 ÷ 6 = 9 reste 0 , donc 54 est divisible par 6 . 22÷5=4 reste 2 22 ÷ 5 = 4 reste 2 , donc 22 n'est pas divisible par 5 .
Un nombre est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9. 423 est divisible par 9 car 4 + 2 + 3 = 9 l'est.
Z est un anneau intègre : il est commutatif, et le produit de deux entiers relatifs est nul si et seulement si l'un de ces deux entiers est nul. l'exemple précédent montre que M2(R) M 2 ( R ) n'est pas un anneau intègre.
La division euclidienne dans ℤ montre que cet ensemble est un anneau euclidien, en conséquence ℤ est un anneau principal. Cela signifie que pour tout idéal I de ℤ, il existe un entier n tel que I est égal à nℤ. Comme les idéaux nℤ et -nℤ sont confondus, il est toujours possible de choisir n positif.
0 : en effet, 0 est divisible par n'importe quel nombre entier, il est donc aussi un multiple de 16 puisque 0 × 16 = 0.