L'orthocentre d'un triangle rectangle est de manière évidente le sommet où se trouve l'angle droit.
Orthocentre selon le type de triangle
Triangle rectangle: L'orthocentre d'un triangle rectangle coïncide avec le sommet qui correspond à l'angle droit. Dans la figure ci-dessous, par exemple, les hauteurs sont BF et les segments triangulaires AB et BC eux-mêmes, l'orthocentre étant le sommet B.
Le point d'intersection des trois hauteurs d'un triangle s'appelle l'orthocentre. Le point D est l'orthocentre du triangle. L'orthocentre peut être à l'intérieur du triangle, comme dans le schéma de gauche. L'orthocentre peut être à l'extérieur du triangle, comme dans le schéma de droite.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
Les trois hauteurs d'un triangle sont concourantes. Leur point d'intersection H, est nommé orthocentre du triangle. On considère l'homothétie de centre le centre de gravité du triangle et de rapport –2. Elle transforme le triangle ABC en un triangle A'B'C'.
Les trois hauteurs d'un triangle sont concourantes (se croisent en un même point) appelé orthocentre du triangle (point H ci-dessus. Si un angle est obtus, l'orthocentre est à l'extérieur du triangle. » Archimède.
Trace une droite perpendiculaire au deuxième côté [BC] et qui passe par le sommet opposé A. Trace une droite perpendiculaire au troisième côté [CA] et qui passe par le sommet opposé B. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle.
La hauteur (CC') du triangle ABC a pour équation y=−2x−12 . Calculer les coordonnées du point H orthocentre du triangle ABC. L'orthocentre du triangle ABC est le point d'intersection des trois hauteurs du triangle. L'orthocentre du triangle ABC a pour coordonnées H(−8;4) H ( - 8 ; 4 ) .
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Le centre de gravité d'un triangle est au 2/3 en partant du sommet de chacune de ses médianes.
produit de l'hypoténuse par la hauteur issue du sommet de l'angle droit. Cette formule permet de calculer la hauteur du triangle rectangle : h = ba/c.
En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l'angle droit, sont appelés cathètes.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle.
On note H le point d'intersection entre la hauteur et la droite [BC]. On dit que H est le pied de la hauteur.
Droite perpendiculaire à un segment et passant par son milieu. (C'est l'ensemble des points d'un plan contenant ce segment, équidistants de ses extrémités.)
En pratique, il suffit de tracer deux médiatrices pour déterminer le centre du cercle circonscrit à un triangle. On trace les médiatrices du triangle (il suffit d'en tracer deux). Leur point d'intersection O donne le centre du cercle circonscrit.
Pour trouver la hauteur d'un triangle équilatéral, utilisez le théorème de Pythagore, a^2 + b^2 = c^2.
le carré de la longueur de l'hypoténuse est égale à la somme des carrés des longueurs des deux autres côtés. On peut calculer la longueur d'un côté d'un triangle rectangle quand on connaît les deux autres côtés. Pour cela, on prend la racine carrée d'un nombre.
Avant de plonger dans la définition approfondie, un triangle scalène est un triangle qui n'a pas de côtés égaux. Aucun de ses trois côtés n'est égal à l'autre et il n'a pas non plus d'angles égaux. Dans cet article, nous discutons de la définition, des propriétés et des formules d'un triangle scalène.
Il s'agit de triangles rectangles dont les côtés de l'angle droit ont pour mesures a et b. Applique la formule du calcul de l'aire d'un triangle rectangle : aire = (a × b) ÷ 2.
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
Une hauteur est un segment qui relie un sommet à son côté opposé et qui est perpendiculaire à ce côté opposé. On peut tracer la hauteur d'un triangle de deux façons: Méthode avec un compas et une règle. Méthode avec une équerre.
Le centre de gravité est le point d'intersection des trois médianes d'un triangle. Le centre du cercle circonscrit au triangle est le point d'intersection des trois médiatrices du triangle.