Concernant 84, la réponse est : Non, 84 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 84) est la suivante : 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84.
Il existe une méthode pour décomposer : exemple : décomposons 84 : Je divise par les nombres premiers : 2-3-5-7-11-13…..
On cherche dans l'ordre croissant des nombres premiers (2 ; 3 ; 5 ; 7 ;…), s'il y a un diviseur premier de 84. Les facteurs 2 ; 3 et 7 sont premiers dans ce produit.
Algèbre Exemples
85 a des facteurs de 5 et 17 .
On décompose 68 et 51 en produits de facteurs premiers. 68 = 2 × 34 = 2 × 2 × 17 = 2 × 17 et 51 = 3 × 17.
Décomposer un nombre, c'est indiquer la position (la classe et le rang) de chacun des chiffres qui composent ce nombre. 42 603 = 4 × 10 000 + 2 × 1 000 + 6 × 100 + 3 × 1.
* 36 = 2 x 2 x 3 x 3. * 84 = 2 x 2 x 3 x 7. Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12.
c) 12 est le plus grand diviseur commun à 72 et 84.
Pour décomposer un nombre en ses facteurs premiers, on commence à le diviser par le plus petit de ses facteurs premiers, on fait la même chose pour le quotient obtenu, puis sur le deuxième quotient, etc. Jusqu'à ce que l'on obtienne un quotient égal à 1.
Département du Vaucluse (84) − COG | Insee.
Donc le PGCD (60 ; 84) = 12.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Décomposer le plus grand facteur
64 est le plus grand facteur de la multiplication (64 > 7). 64 est décomposé en 60 + 4.
On écrira 6 + 2 = 8 et 2 + 6 = 8 5 + 3 = 8 et 3 + 5 = 8.
Tout nombre entier supérieur ou égal à 2 est décomposable en un produit de nombres premiers, unique à l'ordre près des facteurs. Exemples : 32 = 2x2x2x2x2. 34 = 2x17.
Les multiples de 8 sont 8, 16, 24, 32, 40, etc.
Les diviseurs de 48 sont : 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48. Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. a. Donner la liste des diviseurs communs de 48 et 72.
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers.
Pour qu'un partage équitable soit possible, il faut que le nombre de personnes divise le nombre de sucettes et le nombre de bonbons. Au maximum, ce nombre sera donc égal au PGCD de 84 et 147. Le PGCD de 147 et 84 est donc 3 × 7 = 2 1 3 \times 7 = 21 3×7=21 .
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 . Le PGCD de 48 et 72 est donc : 24 .
Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
88 a des facteurs de 2 et 44 . 44 a des facteurs de 2 et 22 . 22 a des facteurs de 2 et 11 .
Donc 18 = 2*3*3.