Fiche n°1 : Le théorème de Pythagore. I- Calculer une longueur. Énoncé : Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
On veut calculer la mesure exacte de la distance AC. [AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152.
dans un triangle ABC, on a : BC2 = AB2 + AC2 le triangle ABC est rectangle en A. BC2 = 132 = 169 (l'hypoténuse serait le plus grand côté) AB2 + AC2 = 122 + 52 = 169 donc BC2 = AB2 + AC2 d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A.
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Réciproque du théorème de Thalès
Les produits en croix sont égaux donc CD / AC = CE / BC. On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre. Donc d'après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.
Le théorème de Thalès permet donc de calculer des distances dans une configuration géométrique comportant des droites parallèles. Ce théorème implique donc qu'il ne peut pas être utilisé pour les triangles rectangles. Si un triangle est rectangle, c'est qu'il ne possède pas de droites parallèles.
Pythagore : biographie du mathématicien, inventeur du célèbre théorème. BIOGRAPHIE DE PYTHAGORE - Philosophe et mathématicien grec ancien, Pythagore est entré dans l'histoire pour avoir formulé le célébrissime théorème de Pythagore. On en sait peu sur la vie du savant dont on s'inspire encore aujourd'hui.
Si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors ce triangle est un triangle rectangle. Si BC² =AB² +AC² , alors ABC est rectangle en A. Si on connaît les longueurs des trois côtés d'un triangle, on peut prouver qu'il est rectangle.
Selon Thalès, l'air et le feu étaient en fait de l'eau évaporée. Même si la Terre flottait sur l'eau, il existait une eau qui entourait la Terre. Thalès expliquait que cette eau, qu'il appelait l'eau céleste, était de la condensation qui provenait de la Terre.
On dit qu'un triangle est rectangle quand l'un de ses 3 angles est droit.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Par exemple : On a : 62 = 36, le nombre dont le carré est égal à 36 est 6. On note alors : √36 = 6.
Pour calculer la longueur du rectangle à partir du périmètre, on recherche d'abord le demi-périmètre puis on soustrait la largeur. L = Dp-l.
La formule pour calculer l'aire d'un carré est c × c, « côté fois côté ». Ex. : un carré de 5 cm de côté a pour aire 5 × 5 = 25 cm2. La formule pour calculer l'aire d'un rectangle est L × l, « longueur fois largeur ».
Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Enfin, la tangente est le rapport entre le sinus et le cosinus, ce qui revient à faire le rapport entre le côté opposé à l'angle et le côté adjacent à l'angle.
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.
Côté opposé à l'angle droit dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (Théorème de Pythagore).
Cette identité était connue à Babylone depuis -685. Pythagore « fut le premier à appeler le ciel cosmos (ordre) et à dire que la Terre est ronde » ; mais on attribue plus souvent la théorie de la sphéricité de la Terre à Parménide. Les disciples développent l'astronomie pythagoricienne.
Le théorème de Pythagore est une très ancienne propriété géométrique apparue plus d'un millénaire avant Pythagore lui-même.
Le pythagorisme repose sur la transmigration des âmes.
D'après Porphyre, la doctrine du philosophe affirmait que « l'âme est immortelle […]. À beaucoup de ceux qui l'abordaient il rappelait la vie antérieure que leur âme avait jadis vécue avant d'être enchaînée à leur corps actuel » (Vie de Pythagore).
Quand on coupe deux droites sécantes au point A par deux droites parallèles (MN) et (BC), on obtient deux triangles ABC et AMN. Le théorème de Thalès énonce que, dans ce type de configuration, les longueurs des côtés d'un triangle sont proportionnels aux côtés associés de l'autre triangle.
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.