Donc PGCD(144 ; 252) = 36.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
Méthode 2 : le tableau des diviseurs premiers
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers. Cette méthode est plus rapide et efficace lorsque l'on cherche le PGCD entre deux grands nombres.
On effectue la division euclidienne du plus grand par le plus petit et on recommence avec le diviseur et le reste, jusqu'à ce que le reste soit nul. Le PGCD est alors le dernier reste non nul.
Les diviseurs de 40 sont 1 ; 2 ; 4 ; 5 ; 8 ; 10 ; 20 ; 40 les diviseurs de 60 sont 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 10 ; 12 ; 15 ; 20 ; 30 ; 60. Les diviseurs communs de 60 et 40 sont donc 1 ; 2 ; 4 ; 5 ; 10 et 20. Le plus grand diviseur commun aux deux nombres est 20.
Les diviseurs de 108 sont 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54 et 108. Les diviseurs de 60 sont 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60. Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
2. D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Existence du pgcd
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
Donc PGCD(144 ; 252) = 36.
Les facteurs pour 180 sont 1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180 1 , 2 , 3 , 4 , 5 , 6 , 9 , 10 , 12 , 15 , 18 , 20 , 30 , 36 , 45 , 60 , 90 , 180 . Les facteurs pour 180 180 sont tous les nombres compris entre 1 1 et 180 180 , qui divisent parfaitement 180 180 .
Alors nous pouvons affirmer que le Plus Grand des diviseurs communs à 110 et à 88 est 22. Super !
Donc, le PGCD de 126 et 210 est 42 et non 1.
Le PGCD est le dernier reste non nul, c'est-à-dire PGCD(72 ;40)=8. Deux nombres a et b sont dits premiers entre eux si PGCD(a;b)=1. Si a et b sont premiers entre eux, alors la fraction a b est irréductible.
Réponse. Donc le plus grand diviseur commun de 252 et 420 est 84.
Le PGCD de 25 et 100 est 25.
Alors, puisqu'on sait que le plus grand commun diviseur de 240 et 400 est 80, cela veut dire que tu auras 80 bouquets.
Le plus grand commun diviseur à 162 et 108 est 54; le cuisinier peut donc préparer 54 barquettes.
1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
En effet : 132 = 1 x 132 = 2 x 66 = 3 x 44 = 4 x 33 = 6x 22 = 11 x 12. Les diviseurs communs (présents dans les deux listes) sont : 1 ; 2; 3 ; 4 ; 6 ; 12. Le plus grand diviseur commun est donc : 12. Remarque : les diviseurs communs sont les diviseurs du pgcd.
4) Par conséquent, le PGCD de 168 et 86 est 2.