15=1×12+3 donc le reste est 3. 12=3×4+0 donc le reste est 0. On s'arrète dès qu'on trouve un reste nul. Donc le PGCD est le dernier reste non nul.
Méthode : Algorithme d'Euclide
On effectue la division euclidienne du plus grand par le plus petit et on recommence avec le diviseur et le reste, jusqu'à ce que le reste soit nul. Le PGCD est alors le dernier reste non nul.
Le PGCD de 15 et 25 est 5.
Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
20 a pour diviseurs 1,2,4,5,10,20. 25 a pour diviseurs 1,5,25. Le plus grand commun diviseur est 5.
Les diviseurs communs de 12 et 18 sont 1, 2, 3, et 6. Le PGCD (12 ; 18) est 6. Méthode 2 : Algorithme des soustractions. Propriété du PGCD : On prend deux nombres entiers strictement positifs a et b.
Détermination pratique du pgcd
Sur l'exemple précédent : 60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24.
Par exemple, pour calculer les multiples de 15, il suffit de multiplier 15 par 1, 2, 3, 4, 5, etc. Les premiers multiples de 15 sont donc 15, 30, 45, 60, 75, 90, etc.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.
36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
Pour une introduction, voir Plus grand commun diviseur de nombres entiers. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Le plus petit multiple commun de 15,20 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 2⋅2⋅3⋅5 2 ⋅ 2 ⋅ 3 ⋅ 5 . Multipliez 2 2 par 2 2 . Multipliez 4 4 par 3 3 .
Présentation. Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36.
– Prenons un exemple avec 108 et 60.
Les diviseurs de 60 sont 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60. Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
Voici la liste des 15 nombres premiers inférieurs à 50 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47. Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}.
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,… sont tous des multiples de trois. 7, 14, 21, 28, 35, 42, 49, etc.
0 : en effet, 0 est divisible par n'importe quel nombre entier, il est donc aussi un multiple de 15 puisque 0 × 15 = 0.
Pour savoir si un nombre est un multiple de 3, il faut additionner tous les chiffres qui composent le nombre. Si le total est égal à 3, 6 ou 9, alors le nombre est un multiple de 3. Par exemple, dans le nombre 15, on additionne les chiffres 1 et 5 : 1+5=6. Le total est égal à 6, il s'agit donc d'un multiple de 3.
Le plus petit multiple commun de 15,25 est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu'ils apparaissent dans un nombre ou l'autre. Multipliez 3⋅5⋅5 3 ⋅ 5 ⋅ 5 .
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 . Le PGCD de 48 et 72 est donc : 24 .