N°13 page 46 Le plus petit diviseur premier de 18 est 2.
Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18.
– Le plus petit diviseur premier de 17 est 17. – Le plus petit diviseur premier de 25 est 5.
1 n'est pas premier car il n'a qu'un seul diviseur dans N : 1 lui-même. 3. 2 est le premier nombre premier, et le plus petit. C'est le seul nombre entier naturel premier qui soit pair.
Définition : Un nombre entier positif est premier s'il possède exactement deux diviseurs : 1 et lui-même. Exemples et contre-exemple : • Voici la liste des 25 premiers nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97…
9 est un n'est pas un chiffre à virgules, donc 2 et 9 sont tous les deux des diviseurs de 18. Et, vous pouvez donc reporter les deux diviseurs 2 et 9 entre les deux autres dans le diagramme : Passez au chiffre suivant de votre liste qui est le 3.
Les multiples de 18 sont : 0, 18, 36, 54, 72, 90, 108, etc. Les multiples de 45 sont : 0, 45, 90, 135, etc.
Le plus petit commun multiple (PPCM) est également connu sous le nom de plus petit diviseur commun. Le PPCM est le plus petit entier positif qui est également divisible par a et b pour deux entiers, abrégé PPCM (a,b). PPCM(2,3), par exemple, est égal à 6 et PPCM(6,10), est égal à 30.
Nombres premiers
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même.
Définition : Un nombre est premier s'il possède exactement deux diviseurs qui sont 1 et lui-même. Exemples : 2, 3, 5, 7, 11, 13, 17, 19, 23, … Cette liste est infinie. Remarque : Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.
Remarque : Le nombre 1 n'est pas premier car il n'a qu'un seul diviseur.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts.
Exemple : − Les diviseurs de 18 sont 1, 2, 3, 6, 8, 9 et 18 et les diviseurs de 24 sont 1, 2, 3, 4, 6, 8, 12 et 24. − Les diviseurs communs à 18 et 24 sont donc : 1, 2, 3 et 6.
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
1) On effectue la division euclidienne du plus grand des deux nombres par le plus petit. 2) On effectue la division euclidienne du diviseur par le reste de la division précédente, jusqu'à ce que le reste de la division soit égal à zéro.
Plus formellement, un nombre parfait n est un entier tel que σ(n) = 2n où σ(n) est la somme des diviseurs positifs de n. Ainsi 6 est un nombre parfait car ses diviseurs entiers sont 1, 2, 3 et 6, et il vérifie bien 2 × 6 = 12 = 1 + 2 + 3 + 6, ou encore 6 = 1 + 2 + 3.
Nombre premier supersingulier
Premier correspondant à une courbe elliptique ayant des propriétés exceptionnelles. Il en existe exactement quinze : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 et 71.
Oui, 59 est un nombre premier. Non, 59 n'est pas un nombre premier. 63 est-il un nombre premier ? Oui, 63 est un nombre premier.
Le plus grand diviseur commun de deux ou plusieurs monômes
On trouve la décomposition maximale de chaque monôme, puis on cherche les facteurs communs apparaissant dans ces décompositions. Le monôme égal au produit de ces facteurs communs sera le plus plus grand commun diviseur des monômes.
Le plus petit diviseur premier de 77 est 7.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Un nombre entier est divisible par 2 si son chiffre des unités est 0 ; 2 ; 4 ; 6 ou 8.
L'ensemble de multiples de 6 est : 6 : {6, 12, 18 …} Écris dans l'ordre les 3 premiers multiples.