L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
L'écart entre chaque valeur et la moyenne s'exprime en kg. Le carré de cet écart s'exprime donc en kg2.
– La manière la plus simple de diminuer l'écart type de l'estimation est d'augmenter le nombre d'observations, c'est-à-dire la taille de l'échantillon si on est dans un contexte de sondage.
Une variance est toujours positive. La valeur d'une variance ne peut être interprétée que par comparaison à la valeur d'une norme ou d'une autre variance. Si une variance est nulle, cela veut dire que toutes les observations sont égales à la moyenne, ce qui implique qu'il n'y a aucune variation de celles-ci.
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous.
Exemple 1 : Calculons la moyenne de la série des notes de Pierre : 4 • 9 • 12 • 13 • Somme des valeurs : 4 + 9 + 12 + 13 = 38 • Effectif total : 4 (il y a 4 valeurs) • Moyenne : 38 : 4 = 9,5 La moyenne de cette série est de 9,5. C'est comme si Pierre avait obtenu 4 fois la note 9,5.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
La variance (ou fluctuation) est la moyenne arithmétique des carrés des écarts à la moyenne. L'écart-type, noté , est la racine carrée de la variance.
Le symbole de l'écart-type se lit sigma. Au pluriel, on écrit : écarts-types et écarts types.
L'incertitude-type donne un regard critique sur une série de mesures. On définit avec elle des conventions d'écriture, elle permet d'établir un intervalle de confiance. L'écart relatif permet de comparer le résultat de la mesure obtenu à une valeur attendue.
L'analyse de variance permet simplement de répondre à la question de savoir si tous les échantillons suivent une même loi normale. Dans le cas où l'on rejette l'hypothèse nulle, cette analyse ne permet pas de savoir quels sont les échantillons qui s'écartent de cette loi.
L'Intervalle de Confiance à 95% est l'intervalle de valeur qui a 95% de chance de contenir la vraie valeur du paramètre estimé. Le seuil de 95% signifie qu'on admet un risque d'erreur de 5%: on peut réduire ce risque (par exemple à 1%), mais alors l'Intervalle de Confiance sera plus large, donc moins précis.
standard deviation n
L'écart type est beaucoup utilisé en recherche statistique. Standard deviation is used a lot in statistical research.
Pour un sondage de N personnes ayant pour résultat la fréquence f et la probabilité pp alors l'intervalle de confiance à 95% se calcule de la façon suivant : [p−1.96√f(1−p)/√n,p+1.96√p(1−p)/√n]. Avec 1.96 la valeur du 2.5 percentile de la distribution normale (pour 99%, la valeur serait 2.58).
La fonction ECARTYPE. PEARSON part de l'hypothèse que les arguments représentent l'ensemble de la population. Si vos données ne représentent qu'un échantillon de cette population, utilisez la fonction ECARTYPE pour en calculer l'écart type. S'il s'agit d'échantillons de taille importante, les fonctions ECARTYPE.
La façon dont les notes dans un groupe se répartissent autour de la moyenne (l'écart-type) : plus les notes de l'ensemble du groupe sont rapprochées de la moyenne, plus la cote R d'un bon élève a des chances d'être élevée.
Pour calculer l'écart-type pour un échantillon, utilisez les formules de cette catégorie : STDEV. S, STDEVA et STDEV. 2. Pour calculer l'écart-type pour une population entière, utilisez les formules de cette catégorie : STDEV.
en probabilité, on définit de même la variance de la variable aléatoire X, que l'on note V(X), et l'écart-type σ(X) : la variance est égale à la moyenne des carrés des écarts à l'espérance. Dans ce calcul, on pondère la moyenne par les probabilités (comme on le fait pour le calcul de l'espérance).
Si on veut trouver l'écart entre deux nombres positifs comme 5 et 9. Comme les deux nombres sont positifs, lorsqu'on tente de faire la soustraction, cela fonctionne comme d'habitude : 9 - 5 = 4. L'écart est donc de 4.