En tant que chiffre, il est utilisé pour « garder le rang » et marquer une position vide dans l'écriture des nombres en notation positionnelle. En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide.
1. Le plus petit élément de l'ensemble ℕ des naturels et le seul à ne pas avoir de prédécesseur dans ℕ ; chiffre qui représente ce nombre. 2. Valeur, quantité, grandeur numérique nulle : Sa fortune est réduite à zéro.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
En effet, le 0 symbolise le néant, le vide, parfois le chaos et le diable. Le chiffre 0 s'utilise pour caractériser l'état de ce qui est sans valeur, gratuit (0 €, par exemple), infinitésimal (0,000000001 par exemple) ou nul.
De l'italien zero , altération de zefiro , issu du latin médiéval zephirum , lui-même de l'arabe صفر , ṣifr (« vide »), lui-même calque du sanskrit शून्य , śūnya.
En arithmétique ordinaire, le nombre 0 n'a pas de signe, de sorte que −0, +0 et 0 sont identiques.
La graphie du zéro, d'abord un cercle, est inspirée de la représentation de la voûte céleste. Comme l'indique l'étymologie, son introduction en Occident est consécutive à la traduction de mathématiques arabes, notamment les travaux d'al-Khwārizmī, vers le VIII e siècle.
A noter que l'inverse de 0 n'existe pas car il est impossible de diviser par 0 en mathématiques. En effet, la division par 0 ne représente rien car on ne peut pas diviser une partie par quelque chose qui n'existe pas.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
Le chiffre zéro a été utilisé pour la première fois par les babyloniens au cours du deuxième millénaire avant J.C., avant d'être réinventé par les Mayas puis par les Hindous. Mais ce sont les arabes qui l'intégreront à leur système de numération, pour le diffuser dans toute l'Europe au cours du X° siècle.
En 1200, le mathématicien italien Fibonacci, qui amena le système décimal en Europe écrivait: «La méthode des Indiens surpasse toute méthode connue pour calculer. C'est une méthode fantastique. Ils font leurs calculs en utilisant neuf chiffres et le symbole zéro.»
Le zéro a été inventé vers le V e siècle en Inde. L'astronome et mathématicien Brahmagupta dessine le vide, le néant, le rien et il invente alors un signe pour l'absence, donc ouvrant le chemin de la représentation à ce qui n'était pas représentable et quantifié jusque-là.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
Le zéro barré ou le zéro pointé sont des conventions typographiques utilisées pour différencier le chiffre 0 de la lettre O, dont l'apparence est proche. Ce zéro représenté 0̸ est donc marqué d'une barre diagonale ou d'un point.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Le signe de l'infini est un dessin représenté par un 8 allongé, légèrement étiré de chaque côté, ressemblant à la forme d'un serpent. Le symbole proviendrait de la déformation progressive de la lettre grecque Omega qui est utilisé pour symboliser l'extrémité sans fin.
Le chiffre huit 8 et un des nombres les plus sacrés, il réunit les deux mondes, le physique et le spirituel dans une circulation spiralée. Couché, il devient lemniscate, symbole de l'infini. Présent au cœur de nos cellules, et dans la structure de la molécule d'ADN il représente deux hélices entrelacées.
La division par zéro donne l'infini. Cette convention a d'ailleurs été défendue par Louis Couturat dans son livre De l'infini mathématique. Cette convention est assez cohérente avec les règles de la droite réelle achevée, dans laquelle n'importe quel nombre, divisé par l'infini, donne 0.
On nous appris qu'un chiffre fois 0 = 0[...] En fait, non. On t'a appris qu'un nombre multiplié par zéro est égal à zéro. Un chiffre n'est rien d'autre qu'un symbole, un dessin, une graphie qui permet de désigner, d'écrire les nombres.
Pour n'importe quel nombre x, son inverse est donc x' tel que x x x' = 1. Or, zéro n'a pas d'inverse puisque n'importe quel chiffre multiplié par zéro donne toujours zéro. Par conséquent, la division par zéro est impossible et aboutirait à des contresens mathématiques.
Les nombres entiers sont les nombres qui ne possèdent pas de chiffre après la virgule. Les nombres entiers permettent de compter. 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; etc.
Les entiers positifs (supérieurs à zéro) s'identifient aux entiers naturels : 0, 1, 2, 3… tandis que les entiers négatifs sont leur opposés : 0, −1, −2, −3… L'entier zéro lui-même est donc le seul nombre à la fois positif et négatif[2]. "Non nul" veut dire tout simplement "ne pas égal à zéro".
Ø (minuscule ø), appelé o barré ou o barré obliquement, est une lettre utilisée dans les alphabets danois, féroïen et norvégien ; dans les alphabets du chinantèque d'Ozumacín et du chinantèque de Tlacoatzintepec au Mexique ; dans certains alphabets de langues camerounaises utilisant l'Alphabet général des langues ...