Définition La fonction cube est la fonction qui, à tout réel x, associe le réel x ^ { 3 }. Remarque La fonction inverse et la fonction cube sont impaires : leur courbe représentative est symétrique par rapport à l'origine du repère.
La fonction cube est la fonction définie sur R ou encore ] − ∞ ; + ∞ [ ]-\infty\,;\,+\infty[ ]−∞;+∞[ par f ( x ) = x 3 f(x)=x^3 f(x)=x3.
En général, le domaine d'une fonction cubique est constitué de tous les nombres réels (−∞,+∞) . Cependant, la plage d'une fonction cubique peut varier en fonction des coefficients. Pour la fonction cubique de base f(x)=x3, le domaine et la plage sont tous deux des nombres réels.
Fonction inverse : formule
L'ensemble de définition de la fonction inverse est R ∖ { 0 } . La formule pour la fonction inverse est f ( x ) = 1 x . La fonction inverse est sa propre bijection réciproque.
Parité La fonction cube est impaire. La représentation graphique de la fonction cube admet l'origine du repère pour centre de symétrie.
Les caractéristiques du cube
Deux arêtes ayant une extrémité commune sont perpendiculaires. Les faces opposés sont parallèles. Les faces adjacentes sont perpendiculaires. Les diagonales des sommets les plus éloignés se coupent en leur milieu.
Pour calculer le volume d'un pavé droit, on applique la formule suivante : V = L × l × h (avec L la longueur, l la largeur et h la hauteur du pavé droit). Pour calculer le volume d'un cube, on applique la formule suivante : V = a3 (avec a l'arête du cube).
Pour une fonction 𝑓 ∶ 𝑋 → 𝑌 , l'ensemble de définition 𝑋 est l'ensemble des valeurs possibles telles que 𝑓 ( 𝑥 ) est définie : 𝑋 ∶ = { 𝑥 ∈ ℝ ∶ 𝑓 ( 𝑥 ) ∈ ℝ } . L'ensemble image 𝑓 ( 𝑋 ) est l'ensemble des valeurs que nous pouvons obtenir en appliquant 𝑓 à des éléments de 𝑋 : 𝑓 ( 𝑋 ) ∶ = { 𝑓 ( 𝑥 ) ∶ 𝑥 ∈ 𝑋 } .
L'ensemble des nombres réels possédant une image par une fonction f est appelé ensemble de définition de la fonction f . De façon formelle, soit f une fonction à valeurs réelles, l'ensemble de définition de f est l'ensemble des réels x pour lesquels l'image f ( x ) existe ou pour lesquels f ( x ) a un sens.
Déterminer l'ensemble de définition à partir de l'expression de f ( x ) f(x) f(x) Si on donne l'expression d'une fonction f, par exemple f ( x ) = x 2 + 3 x f(x)=x^2+3x f(x)=x2+3x, l'ensemble de définition a priori sera l'ensemble de tous les réels de −∞ jusqu'à +∞.
This is because if we cube a negative number, for example, negative three, we get a negative answer. So, operating in reverse, we can find the cube root of any negative number, and it gives a negative result. So, the domain of the cube root function is the entire set of real numbers.
For the cubic function f(x)=x3 f ( x ) = x 3 , the domain is all real numbers because the horizontal extent of the graph is the whole real number line. The same applies to the vertical extent of the graph, so the domain and range include all real numbers.
Une fonction cubique est de la forme f(x) = ax 3 + bx 2 + cx + d , où a, b, c et d sont des constantes et a ≠ 0.
La fonction cube est une fonction impaire, donc sa courbe représentative est symétrique par rapport à l'origine du repère. Comme la fonction cube est strictement croissante sur , si et sont deux réels positif, négatifs ou nuls, alors équivaut à (l'inégalité ne change pas de sens).
d) Représentation graphique : La courbe représentative de la fonction cube est appelée une cubique. Cette courbe admet un centre de symétrie, le point O origine du repère. En effet, pour un réel x , (– x)3 = – x3 .
2) Fonction carré Définition : La fonction carré est la fonction f définie sur R par f (x) = x2 . Propriété : La fonction carré est strictement décroissante sur l'intervalle −∞;0 ⎤⎦ ⎤⎦ et strictement croissante sur l'intervalle 0;+∞⎡⎣⎡⎣ .
Déterminer l'ensemble de définition à partir de l'expression de f(x) Si on donne l'expression d'une fonction f, par exemple f(x)=x²+3x, l'ensemble de définition a priori sera l'ensemble de tous les réels de -∞ jusqu'à +∞. On pourra alors noter Df= .
domf={x∈R|f(x)∈R}. Restrictions pour déterminer le domaine d'une fonction algébrique : Si la formule contient un dénominateur, celui-ci ne doit pas être nul. Ainsi, si f est une fraction algébrique P(x)Q(x), alors domf={x∈R|Q(x)≠0}.
L'ensemble ℕ vient de l'appellation naturale attribuée à Peano. Il désigne l'ensemble des nombres entiers naturels (exemples : 0 1 2 3 7). Si l'on note ℕ*, cela signifie que l'on exclut le zéro. L'ensemble ℤ vient de l'allemand zahlen qui signifie compter.
L'ensemble de définition d'une fonction est l'ensemble des éléments de son ensemble de départ qui ont une image par cette fonction. Par exemple, celui de la fonction f : x↦x² est ℝ et celui de la fonction g : x↦1/x est l'ensemble des réels privé de 0.
Une fonction polynôme de degré 2 f est définie sur ℝ par f (x) = ax2 + bx + c, où a, b et c sont des nombres réels donnés et a ≠ 0.
L'ensemble des nombres rationnels est un corps commutatif, noté Q ou ℚ (baptisé ainsi par Peano en 1895 d'après l'initiale du mot italien quoziente, le quotient). De par sa définition : où ℤ est l'anneau des entiers relatifs.
Les cubes de 4 et de -4 sont respectivement égaux à 64 et -64. Le cube d'un nombre réel positif (resp. négatif) est un nombre positif (resp. négatif) et, comme les nombres entiers ou rationnels sont aussi des nombres réels, cette propriété est encore vérifiée.
Volume d'un cube = arête x arête x arête.