Les images des nombres – 1.5 ; 2.5 ; – 4 et 3.4 par la fonction h sont respectivement – ; 0.4 ; – 0.25 et . L'image de 0 par la fonction h n'existe pas.
L'image de 0 par la fonction f est 0.
RAPPEL : Calculer une image : Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
L'image de 1 par f vaut 1² = 1, soit f(1 )= 1.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
Or il existe deux nombres dont le carré soit égal à 1 : 12 = 1 et (−1)2 = 1. Le nombre 0 admet donc deux antécédents par ℎ qui sont 1 et −1.
L'image de -2 par la fonction h est 21.
4 est l'image de 8.
Calcul de valeurs
o Pour calculer l'image d'un nombre, on remplace x par le nombre dans la forme algébrique, puis on calcule normalement. Par exemple : g(-2) = 3 x (-2)² -1 Donc g(-2) = 11. 11 est l'image de -2 par la fonction g.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
Lire l'image de a par f
On cherche ensuite, si elle existe, l'ordonnée du point d'intersection de C_f et de la droite x=a. Cette ordonnée vaut f\left(a \right), image de a par f. On détermine l'ordonnée du point d'intersection de la droite x =2 et de C_f. Le point de C_f d'abscisse 2 a pour ordonnée -1.
Les fonctions sont souvent exprimées par une équation qui relie la variable x à son image. Ainsi, lorsque l'on veut déterminer l'image de xx par la fonction ff, il suffit de remplacer x dans l'équation par sa valeur ou son expression afin d'obtenir son image f(x) ou y.
Calculons l'image de 3 par la fonction f. Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 3. Il s'agit donc de remplacer x par 3 dans l'expression de f. L'image de 3 par la fonction f est donc égal à 5.
1) Quelle est l'image de 1 par la fonction g ? L'image de 1 par la fonction g est 4.
On dit que 9 est l'image de -3 par la fonction f. -3 est un antécédent de 9 par la fonction f.
Déterminer des images et des antécédents dans le cas de fonctions affines Exercice. On donne la fonction affine f d'expression f(x)=-9x+7. Quelle est l'image de 4 par la fonction f ? L'image de 4 par la fonction f est −29.
Quelle est l'image de 6 par la fonction f ? L'image de 6 par la fonction f est 3.
On dit que 10 est l'image de 2 par la fonction f et on note f(2) = 10.
Nous devons donc déterminer le ou les nombres x qui ont pour image12. Autrement écrit, il nous faut trouver les x tels que f(x) = 12. Pour cela, nous devons résoudre l'équation f(x) = 12 où l'inconnue est x. Le seul antécédent de 12 par la fonction f est donc x = 4.
Si nous donnons 5 comme valeur à , l'image de 5 par la fonction sera 5 2 + 3 = 28 .
0 n'admet pas d'antécédent par f.
Il s'agit de trouver le nombre x tel que h(x) = –10. Or, h(x) = 5x donc 5x = –10 ; soit x = = –2. L'antécédent de –10 par h est –2.
L'image de 3 par la fonction f est 0.