Deux tests statistiques, le test de Student et le test de Wilcoxon, sont généralement employés pour comparer deux moyennes. Il existe cependant des variantes de ces deux tests, pour répondre à différentes situations, comme la non indépendance des échantillons par exemple.
Le numérateur du test statistique est la différence entre les moyennes des deux groupes. Il s'agit d'une estimation de la différence entre les deux moyennes de population inconnues. Le dénominateur est une estimation de l'erreur standard de la différence entre les deux moyennes de population inconnues.
Il s'agit de comparer une moyenne observée à une moyenne théorique (μ). Si la valeur absolue de t (|t|) est supérieure à la valeur critique, alors la différence est significative. Dans le cas contraire, elle, ne l'est pas.
L'ANOVA est un test statistique qui généralise le test t − Student au cadre de comparaisons de plusieurs moyennes. On l'applique dès lors que l'on étudie les effets d'une ou plusieurs variables qua- litatives sur une variable quantitative.
Vous avez les échantillons de deux groupes d'individus et vous souhaitez comparer leurs revenus moyens. Il s'agit d'une variable numérique. Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche).
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
Ce test post-hoc (ou test de comparaisons multiples) peut être utilisé pour déterminer les différences significatives entre les moyennes de groupes dans une analyse de variance.
Définition. Le test de Dunn est un test statistique utilisé pour effectuer un nombre spécifique de comparaisons entre des groupes de données et déterminer laquelle d'entre elles est significative.
ANOVA teste l'homogénéité de la moyenne de la variable quantitative étudiée sur les différentes valeurs de la variable qualitative. L'analyse de la variance, si elle aboutit à un résultat éloigné de zéro, permet de rejeter l'hypothèse nulle : la variable qualitative influe effectivement sur la variable quantitative.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Les méthodes non paramétriques sont utiles lorsque l'hypothèse de normalité ne tient pas et que l'effectif d'échantillon est faible. Cela dit, dans les tests non paramétriques, vos données reposent également sur des hypothèses.
A.
Le test statistique est utile lorsqu'il faut trancher entre 2 hypothèses : H0 : hypothèse nulle, elle correspond à une situation de statu quo. H1 : hypothèse alternative, elle correspond à l'hypothèse qu'on veut démontrer.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
Le test U de Mann-Whitney peut être utilisé pour tester si deux groupes indépendants ont été tirés de la même population. Ce test est surtout utilisé pour étudier si une variable indépendante nominale dichotomique influence une variable dépendante ordinale de scores.
Le test d'homogénéité (ou de comparaison) consiste à vérifier que K (supérieur à 2) échantillons (groupes) proviennent de la même population ou, cela revient à la même chose, que la loi de la variable d'intérêt est la même dans les K échantillons.
Il se calcule comme suit : W = X2/N(K-1) ; où W est la valeur W de Kendall ; X2 est la valeur statistique du test de Friedman ; N est la taille de l'échantillon. k est le nombre de mesures par sujet (M. T. Tomczak and Tomczak 2014).
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Interpréter les résultats d'un test de Kruskal-Wallis
La p-value nous indique que la probabilité de rejeter l'hypothèse nulle alors qu'elle serait vraie est inférieure à 0.0005. Dans ce cas, on peut rejeter en toute confiance l'hypothèse nulle d'absence de différence significative entre les fromages.
Un test post-hoc est une procédure qui permet de comparer des groupes sans qu'une hypothèse sur la relation entre ces groupes ait été posée avant d'examiner les données.
Le test de Kruskal-Wallis est une alternative non paramétrique au test ANOVA à un facteur. Il étend le test de Wilcoxon à deux échantillons dans les cas où il y a plus de deux groupes à comparer. Il est recommandé lorsque les hypothèses du test ANOVA, à un facteur, ne sont pas respectées.
En général, un seuil de signification (noté alpha ou α) de 0,05 fonctionne bien. Un seuil de signification de 0,05 indique un risque de 5 % de conclure à tort qu'une différence existe. Valeur de p ≤ α : les différences entre certaines moyennes sont statistiquement significatives.
TEST DE CORRÉLATION DE PEARSON
Il est utilisé pour étudier l'association entre un facteur d'étude et une variable de réponse quantitative, il mesure le degré d'association entre deux variables en prenant des valeurs entre -1 et 1. Des valeurs proches de 1 indiqueront une forte association linéaire positive.
Les plus populaires sont l'AIC (Akaike's Information Criterion) et le BIC (ou SBC, Bayesian Information Criterion). Lorsque différents modèles paramétriques sont comparés, le modèle associé à l'AIC ou au BIC le plus faible a la meilleure qualité parmi les modèles comparés.
Ouvrir XLSTAT. Sélectionner la commande XLSTAT / Modélisation / Analyse de la Variance (ANOVA). Une fois le bouton cliqué, la boîte de dialogue correspondant à l'ANOVA apparaît. Sélectionner les données sur la feuille Excel.