D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A. Découvre comment appliquer le théorème de Pythagore.
Si un triangle est inscrit dans un cercle et que l'un des côtés du triangle est un diamètre du cercle, alors le triangle est rectangle.
Si, dans un triangle, la longueur de la médiane issue du sommet opposé au plus grand côté vaut la moitié de la longueur de ce côté, alors le triangle est rectangle.
Le plus long côté s'appelle l'hypoténuse et les autres côtés sont les côtés de l'angle droit. Le théorème de Pythagore dit ceci : dans un triangle rectangle, la somme des carrés des côtés de l'angle droit est égale au carré de l'hypoténuse.
Par les aires des triangles semblables
Les aires des trois triangles semblables AHC, CHB et ACB, portées par les côtés AC, CB et AB sont proportionnelles aux carrés de ces côtés. L'égalité précédente donne donc le théorème de Pythagore, en simplifiant par le coefficient de proportionnalité : AC2 + BC2 = AB2.
Théorème de Pythagore → En général, il est utilisé pour calculer les côtes d'un triangle rectangle, les diagonales d'une figure, prouver qu'un triangle est rectangle. Théorème de Thalès → En général, il est utilisé pour démontrer que des droites sont parallèles.... Bonne journée !
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Le théorème de Thalès sert donc à calculer les longueurs dans une figure géométrique composée de triangles.
Après le célèbre Théorème de Pythagore, le theoreme de thales est le second plus grand Théorème que l'on apprend au collège.
Le théorème de Pythagore s'applique aux triangles rectangles. Son principe : dans un triangle rectangle, le carré de la longueur de l'hypoténuse (le plus grand côté) est égal à la somme des carrés des longueurs des deux autres côtés.
D'autre part : AB2 + AC2 = 122 + 52 = 169 dans un triangle ABC, on a : BC2 = AB2 + AC2 le triangle ABC est rectangle en A.
Si un quadrilatère a trois angles droits alors c'est un rectangle. Si les diagonales d'un quadrilatère se coupent en leur milieu et sont de même longueur alors c'est un rectangle.
Exemple : Considérons un triangle ABC tel que AB = 3 cm, BC = 4 cm et AC = 5 cm. Pour prouver que ce triangle est rectangle, nous pouvons utiliser la propriété de Pythagore : si AB² + BC² = AC², alors le triangle est rectangle. Nous avons AB² = 3² = 9 et BC² = 4² = 16.
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
En formule : Si dans un triangle ABC, on a BC² = AB ²+ AC² alors le triangle est rectangle en A. Ou en français, si un triangle ABC est rectangle, alors la somme des carrés des côtés est égale au carré de l'hypoténuse.
Le théorème de Pythagore affirme : Dans un triangle rectangle, le carré de la longueur de l'hypoténuse (côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés. Ce résultat permet de calculer la longueur d'un des côtés d'un triangle rectangle si l'on connaît les deux autres.
Cette propriété est utilisée dans des instruments de calcul de longueurs. En anglais et en allemand, le théorème de Thalès désigne un autre théorème de géométrie qui affirme qu'un triangle inscrit dans un cercle, et dont un côté est un diamètre, est un triangle rectangle.
La réciproque du théorème de Thalès sert à montrer que deux droites sont parallèles.
Le théorème de Pythagore et sa réciproque s'utilisent dans des contextes différents: Le théorème de Pythagore permet de trouver la longueur d'un côté d'un triangle rectangle. La réciproque du théorème de Pythagore permet de vérifier qu'un triangle est rectangle.
La réciproque du théorème de Pythagore
Si dans un triangle ABC, on a BC^2=AB^2+AC^2, alors le triangle ABC est rectangle en A. D'une part, BC^2=5^2=25. D'autre part, AB^2+AC^2=3^2+4^2=9+16=25.
Un théorème se démontre à partir d'hypothèses de base et de règles d'inférence. La démonstration, bien que nécessaire à la classification de la proposition comme « théorème », n'est pas considérée comme faisant partie du théorème.
Un triangle rectangle isocèle est un triangle ayant un angle droit et dont deux côtés sont de la même longueur. Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre. une symétrie axiale conserve l'orthogonalité. une symétrie centrale conserve l'orthogonalité.
D'après le théorème de Pythagore : Si, dans un triangle, le carré du côté le plus long n'est pas égal à la somme des carrés des deux autres côtés, alors ce triangle n'est pas un triangle rectangle.