Fonction définie dans l'ensemble des nombres réels par une relation de la forme f(x) = k, où k est un nombre réel. Le graphique d'une fonction constante est une droite horizontale, parallèle à l'axe des abscisses.
En mathématiques, une fonction constante est une fonction qui ne prend qu'une seule valeur, indépendamment de sa variable.
S'il existe y = x tel que f(y) = −1 alors f est positive en x, négative en y et continue sur I. Donc, par le théor`eme des valeurs intermédiaires, il existe z entre x et y tel que f(z) = 0, ce qui contredit f(z)2 = 1. Donc f est constante égale `a +1.
Donc : toute fonction linéaire est aussi une fonction affine. * Si a = 0, l'expression devient : f (x) = b . On obtient alors une fonction constante. Donc : toute fonction constante est aussi une fonction affine.
En géométrie, une courbe de largeur constante est une courbe plane fermée dont la largeur, mesurée par la distance entre deux droites parallèles opposées qui lui sont tangentes, est la même quelle que soit l'orientation de ces droites. Le triangle de Reuleaux est une courbe de largeur constante.
Une constante est un objet dont l'état reste inchangé durant toute l'exécution d'un programme. On ne peut jamais modifier sa valeur et celle-ci doit donc être précisée lors de la définition de l'objet. Une variable est un objet dont le contenu peut être modifié par une action.
1) f est constante sur R si et seulement si ∃C ∈ R/ ∀x ∈ R, f(x) = C. On peut donner une définition plus simple. f est constante sur R si et seulement si ∀x ∈ R, f(x) = f(0). 2) f n'est pas constante sur R si et seulement si ∃x ∈ R, f(x) = f(0).
Si une fonction affine est une fonction constante, c'est-à-dire qu'elle est de la forme 𝑓 ( 𝑥 ) = 𝑏 , la représentation graphique de cette fonction est toujours une droite horizontale passant par le point ( 0 ; 𝑏 ) .
On rappelle qu'une fonction affine f est représentée par une droite et admet une expression de la forme f\left(x\right)=ax+b. f est une fonction affine, elle a une expression de la forme f\left(x\right) = ax+b, avec : a le coefficient directeur de la droite. b l'ordonnée à l'origine.
Ce coefficient directeur représente la « pente » de la droite représentative de f f f. Si a > 0 a > 0 a>0 la fonction est croissante, la droite « monte ». Si a = 0 a=0 a=0 la fonction est constante, la droite est horizontale. Si a < 0 a < 0 a<0 la fonction est décroissante, la droite « descend ».
Une variation croissante est symbolisée par une flèche droite dirigée vers le haut à droite, tandis qu'une variation décroissante est symbolisée par une flèche dirigée en bas à droite. Le cas d'une fonction constante sur un intervalle est éventuellement noté par une flèche horizontale dirigée vers la droite.
Dans l'expression y = mx + b, le paramètre b est une constante. Lorsqu'on compare entre elles les mesures de segments homologues de figures semblables, le rapport de ces mesures est une constante.
Propriétés : 1) Une fonction affine est représentée par une droite. 2) Une fonction linéaire est représentée par une droite passant par l'origine. 3) Une fonction constante est représentée par une droite parallèle à l'axe des abscisses. Une fonction affine est représentée par une droite.
Utilisation de constantes dans les formules
Une constante est une valeur qui n'est pas calculée ; elle est toujours la même. Par exemple, la date 09/10/2008, le nombre 210 et le texte « Bénéfices trimestriels » sont tous des constantes.
Une fonction constante, c'est une fonction qui ne varie pas, et donc naturellement elle a une dérivée nulle.
Représentation graphique
La droite a pour « pente » ou « coefficient directeur » le réel a. Si a > 0, la fonction affine est croissante (la droite « monte ») et si a < 0, elle est décroissante (la droite « descend »).
La forme canonique est une forme d'écriture paramétrique de l'équation d'une fonction. On dit que la forme canonique d'une fonction est porteuse de sens puisqu'elle donne de l'information sur l'allure de son graphique. On l'appelle aussi forme transformée.
On écrit f : x → ax. Cela signifie : f est la fonction linéaire qui, à tout nombre x, associe le nombre ax, appelé image de x par la fonction f. On écrit aussi : soit f définie par f(x) = ax.
Soient x1 et x2 deux nombres quelconques (x1 x2). L'accroissement des images par une fonction affine, est proportionnel à l'accroissement des nombres associés.
Une fonction affine est une fonction dont le graphique est une droite. Par conséquent, le graphique d'une fonction non affine n'est pas une droite. Un exemple de fonction non affine serait quelque chose comme 𝑦 est égal à 𝑥 au cube ou 𝑦 est égal à 𝑒 à la puissance 𝑥.
On sait tracer la droite représentative d'une fonction affine. Pour cela, il suffit de déterminer deux points lui appartenant. La fonction affine f a pour expression f\left(x\right)= -2x+1. Tracer la droite D, d'équation y= -2x+1, représentative de la fonction f.
Une fonction affine est une fonction qui, à tout nombre x, associe le nombre ax + b (a et b étant des nombres quelconques donnés). Remarque : une fonction linéaire est une fonction affine particulière. Dans ce cas : b = 0. On a f(–5) = 5 × (–5) – 3 = –28 .
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
si la dérivée est nulle sur tout l'intervalle, la fonction est constante sur cet intervalle. Exemple : la fonction est définie sur . Sa dérivée est toujours positive (ou nulle pour x = 0). Cette fonction est donc croissante sur son domaine de définition.