Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
coordonnées d'un point
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
x(AB*)=x(B)-x(A) c'est à dire l'abscisse du point B moins l'abscisse du point A. y(AB*)=y(B)-y(A) c'est à dire l'ordonnée du point B moins l'ordonnée du point A. Remarque : Les coordonnées du vecteur AB* représentent le chemin horizontal et vertical qui permet d'aller du point A au point B.
Pour lire les coordonnées d'un point M dans un repère, on commence par tracer la parallèle à chacun des axes passant par M. On lit la valeur de l'abscisse du point M à l'intersection entre l'axe des abscisses et la parallèle à l'axe des ordonnées.
Voici des exemples de formats qui fonctionnent : Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
Calcul vectoriel - Points clés
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) .
Les coordonnées géographiques sont traditionnellement exprimées dans le système sexagésimal, parfois noté « DMS » : degrés ( ° ) minutes ( ′ ) secondes ( ″ ). L'unité de base est le degré d'angle (1 tour complet = 360 ° ), puis la minute d'angle (1 ° = 60 ′ ), puis la seconde d'angle (1 ° = 3 600 ″ ).
Exemple : Soit une latitude de 45° 53' 36" (45 degrés, 53 minutes et 36 secondes). Exemple : Soit une longitude de 121,135°. 1) Le nombre avant la virgule indique les degrés → 121°. 2) Multiplier le nombre après la virgule par 60 → 0,135 × 60 = 8,1.
Les coordonnées géographiques d'un point seront donc interpolées localement entre des parallèles et des méridiens en faisant ce que l'on appelle couramment "une règle de trois". Longitude = 0.10 - (0.10 x d1/d2). Latitude = 54.30 - (0.10 x l1/l2).
Par convention les coordonnées géographiques s'écrivent ainsi : 45° 45′ 35″ nord, 4° 50′ 32″ est. Dans cet exemple, il faut lire « quarante-cinq degrés, quarante-cinq minutes, et trente-cinq secondes de latitude nord, et quatre degrés, cinquante minutes et trente-deux secondes de longitude est. »
On rappelle qu'en coordonnées cartésiennes, l'addition de vecteurs peut être effectuée en additionnant les composantes correspondantes des vecteurs. Si ⃑ 𝑎 = ( 𝑥 , 𝑦 ) et ⃑ 𝑏 = ( 𝑥 , 𝑦 ) , alors ⃑ 𝑎 + ⃑ 𝑏 = ( 𝑥 + 𝑥 , 𝑦 + 𝑦 ) .
70 exprimé en % de 250 = (70 x 100) ÷ 250 = 28 %. Pour calculer la différence de pourcentage entre deux nombres, on utilisera les mêmes calculs de base.
En mathématiques un repère permet d'identifier par une liste de coordonnées chaque point d'une droite, d'un plan ou plus généralement d'un espace affine. Ce procédé fonde la géométrie analytique, dans laquelle les transformations géométriques peuvent être étudiées par leur expression.
Dans un repère orthonormé du plan, la distance entre deux points A et B de coordonnées respectives (xA;yA) et (xB;yB) est donnée par : AB=(xB−xA)2+(yB−yA)2 .
La projection Transverse universelle de Mercator (en anglais Universal Transverse Mercator ou UTM) est un type de projection cartographique conforme de la surface de la Terre. L'Allemagne l'utilise sous le nom de Projection de Gauss-Krüger.
Les coordonnées géographiques permettent de localiser un lieu sur la Terre grâce à trois mesures : l'altitude, la longitude et la latitude.
Si la carte est bien faite, vous trouverez sur les bords de la carte des nombres en regard de chacun de ces traits : ce sont les graduations de coordonnées. Les valeurs de latitude sont indiquées sur les côtés droit et gauche de la carte, tandis que celles de longitude le sont en haut et en bas de la même carte.
Le milieu d'un segment est le point situé à égale distance des deux extrémités. On peut trouver les coordonnées du milieu de 𝐴 𝐵 en divisant par deux chacune les distances horizontales et verticales entre 𝐴 et 𝐵 .
Un vecteur u → = A B → est représenté par une flèche. Le point initial s'appelle l'origine du vecteur. Le point final s'appelle l'extrémité du vecteur. Le nom du vecteur est noté (ou non) au dessus de la flèche qui représente le vecteur.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
La latitude est la mesure angulaire d'un endroit, exprimée en degrés nord ou sud par rapport à l'équateur, allant de 0° à l'équateur à 90° N ou 90° S aux pôles. Les lignes de longitude (aussi appelées « méridiens ») vont du nord au sud, d'un pôle à l'autre.
Pour vérifier que la photo est bien géolocalisée, cliquez, en bas de la fenêtre, sur “Informations sur l'image (ExifTool)”. Si vous scrollez dans les informations données, vous trouverez des “données de location”, avec notamment la position GPS, la latitude, la longitude, …
► Ouvrez votre navigateur internet et allez sur Google Maps. ► Tout en haut à gauche se trouve une barre de recherche. Entrez-y l'adresse recherchée et appuyez sur la touche de votre clavier Entrée. ► La carte de la zone s'affiche, avec un petit marqueur rouge à l'endroit que vous recherchez.