Diviseurs de 90 : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90 (idem).
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Les diviseurs d'un nombre
Un diviseur d'un nombre est un nombre entier qui divise ce nombre sans qu'il n'y ait de reste. En d'autres mots, un nombre entier est un diviseur d'un autre nombre si le quotient est un nombre entier.
Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs.
Un tel entier existe bien, et il en existe un seul vérifiant ces trois propriétés qui est le PGCD au sens de la définition précédente quand (a,b) ≠ (0,0). Avec cette définition PGCD(0,0)=0.
Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12. Le PPCM est le produit du PGCD par le reste des facteurs non communs (en noir) donc 12 x 3 x 7 = 252. 2) Nombres premiers entre eux : Ce sont des nombres qui ont un et un seul diviseur commun : 1.
D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Le nombre d'hommes par équipe est un diviseur de 80 : les diviseurs de 80 sont :1, 2, 4, 5, 8, 10, 16, 20, 40, le nombre de femmes par équipe est un diviseur de 60 les diviseurs de 60 sont : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
1 – 350 = 1 x 350 = 2 x 175 = 5 x 70 = 7 x 50 = 10 x 35 = 14 x 25 La liste des diviseurs de 350 est : 1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175 et 350.
PPCM(2,3), par exemple, est égal à 6 et PPCM(6,10), est égal à 30. Le plus petit multiple commun (PPCM) de deux nombres ou plus est le plus petit nombre également divisible par tous les nombres de l'ensemble.
Un nombre entier naturel (supérieur ou égal à 2) est un nombre premier s'il admet exactement 2 diviseurs : 1 et lui-même. Exemple : 2, 3, 5, 7, 11, 13, 17, 19 … sont des nombres premiers. Il en existe une infinité.
Si PGCD(8, 12) = 4 et PPCM(8, 12) = 24, alors : 4 × 24 = 8 × 12. Par extension, on peut trouver le PPCM de deux ou plusieurs polynômes.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.
561÷357 (à la calculatrice touche ÷R) on obtient 1 en quotient et 204 en reste. Après, on continue : On divise le plus petit des deux nombres de la division précédente par le reste de cette division. --> Le dernier reste non nul est 51 donc PGCD (357 ; 561) = 51.
Le plus grand de ces diviseurs est 18. On note : PGCD(72, 54) = 18.
18 n'est pas divisible par 4 car, 18 divise par 4 = 4,5 donc il n'est pas exact... 35 est divisible par 5 car, 35 divise par 5 = 7 donc c'est un nombre entier .
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 704) est la suivante : 1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704.
Exercice 1 : Diviseurs
1. Les deux plus grands diviseurs de 95 sont 45 et 95 car tous les diviseurs de 95 sont 1, 5, 19, 45 et 95. 2.