La tangente d'un angle aigu dans un triangle rectangle est un rapport de longueurs qui ne dépend que de la mesure de l'angle. On le calcule à partir des longueurs du côté adjacent et du côté opposé à l'angle.
Dans le cas d'un triangle rectangle ABC rectangle en B, la tangente de l'angle A est égale à la longueur du côté opposé à l'angle A divisée par la longueur du côté adjacent à l'angle A, donc tan A = BC/BA.
Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point.
La tangente d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par son côté adjacent.
Par exemple, le cosinus est le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse. Quant à la tangente, elle est le rapport entre la fonction sinus et cosinus.
tan = COCA = Côté Opposé / Côté Adjacent ; CAH - SOH - TOA ("Casse-toi !") : Cosinus = Adjacent sur Hypoténuse ; Sinus = Opposé sur Hypoténuse ; Tangente = Opposé sur Adjacent.
On met la calculatrice en mode degré ; on tape 100, inv puis tan. L'affichage est : 89,4270613. Le résultat est : l'angle qui a pour tangente 100 mesure 89,4° (au dixième près par défaut). Remarque : la démarche est la même si on connaît un cosinus ou un sinus.
Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(45) est 1 .
Nous pouvons calculer les rapports trigonométriques de cette façon : Sinus = Opposé/Hypoténuse ; Cosinus = Adjacent/Hypoténuse ; Tangente = Opposé/Adjacent.
Définition. On dit qu'une droite d est tangente au point A zu cercle C de centre O si cette dernière est perpendiculaire au rayon [OA] et passe par A.
Dans un triangle rectangle, la tangente d'un angle est égale au rapport de la longueur du côté opposé à cet angle sur la longueur du côté adjacent à ce même angle.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Pour convertir l'arctangente en degrés, multipliez le résultat par 180/PI( ) ou utilisez la fonction DEGRES.
En géométrie, le sinus d'un angle dans un triangle rectangle est le rapport entre la longueur du côté opposé à cet angle et la longueur de l'hypoténuse. La notion s'étend aussi à tout angle géométrique (compris entre 0 et 180°). Dans cette acception, le sinus est un nombre compris entre 0 et 1.
On appelle cotangente (cotg) la fonction inverse de la tangente. La cotangente représente donc le rapport entre la mesure du côté adjacent de l'angle de référence et la mesure de son côté opposé. En termes mathématiques, la cotangente peut s'exprimer de l'une ou l'autre des manières suivantes : cotg = ou ou .
La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente.
Trigonométrie Exemples
Rendez l'expression négative car la tangente est négative dans le quatrième quadrant. La valeur exacte de tan(30) est √33 . Le résultat peut être affiché en différentes formes.
Trigonométrie Exemples
La valeur exacte de cos(30°) cos ( 30 ° ) est √32 . Le résultat peut être affiché en différentes formes.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(60) est √32 . Le résultat peut être affiché en différentes formes.
Quant au cosinus, c'est tout simplement le sinus du complémentaire (de l'angle) : « co- » vient du latin cum, qui signifie « avec ». La tangente, elle, vient de ce qu'elle mesure une portion d'une tangente au cercle trigono- métrique.
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .