Son abscisse est -5. Son ordonnée est 3. Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal.
Calculer l'ordonnée du point M de la droite (D) connaissant son abscisse. Taper les nombres décimaux avec un point et non une virgule, exemple : taper 0.65 au lieu de 0,65 (indiquer le 0 avant le point). Ne pas laisser d'espace vide entre les caractères.
Dans un repère du plan, on a besoin de deux nombres pour indiquer la position d'un point : ce sont ses coordonnées. La première coordonnée, l' abscisse, se lit sur l'axe horizontal (l'axe des abscisses) ; la seconde, l' ordonnée, se lit sur l'axe vertical (l'axe des ordonnées).
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d.
L'ordonnée est la coordonnée verticale d'un point dans un repère cartésien. Elle indique la distance entre ce point et l'axe horizontal. Pour représenter l'ordonnée d'un point, on utilise généralement la lettre « y ».
L'ordonnée du point d'abscisse 4 est -2. Question 4 : Quelles sont les abscisses des points dont l'ordonnée est 2 ? Il y a trois point dont l'ordonnée est 2 : le premier a pour abscisse -4, le deuxième 0 et le troisième 8.
En géométrie cartésienne, l'ordonnée à l'origine du graphe d'une fonction désigne la valeur de l'ordonnée y lorsque l'abscisse x vaut 0. En d'autres termes, c'est la valeur de l'ordonnée du point d'intersection entre la courbe de la fonction et la droite d'équation x = 0, aussi appelée axe des ordonnées.
Fiches méthodes. Si on a une fonction et qu'on cherche les coordonnées d'un point de sa courbe représentative : on choisit une valeur de x et on calcule y = f(x) en remplaçant x dans l'expression f(x) donnée. On obtient ainsi les coordonnées ( x ; y = f(x) ) d'un point de la représentation graphique de la fonction f.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Graphiquement, elle exprime la variation verticale de la droite pour un déplacement horizontal d'une unité positive. L'ordonnée à l'origine, qui est représentée par la lettre b, est la valeur de y lorsque x est zéro. Il s'agit donc de la position de la droite lorsque celle-ci croise l'axe des y.
Un repère de l'espace est constitué de 3 axes : celui des abscisses, celui des ordonnées et celui des cotes. Les coordonnées d'un point de l'espace sont constituées de 3 nombres : l'abscisse, l'ordonnée et la cote de ce point, lisibles sur les axes du même nom.
Si vos animations sont planes, vous ne disposez que de deux dimensions, X et Y. C'est le cas d'une feuille de papier ou d'un écran. X représente l'axe horizontal (gauche/droite), et Y représente l'axe vertical (haut/bas). Les animateurs 3D bénéficient d'un troisième axe, Z, qui simule la profondeur.
Définition de l'abscisse d'un point
Sur un axe gradué, on repère chaque point grâce à un nombre appelé son abscisse. Exemple : Sur l'axe gradué précédent, L'abscisse de A est 1, l'abscisse de H est 4, l'abscisse de T est 1,5 et l'abscisse de S est 6,25.
Ligne horizontale dénommée x et formant un plan avec l'axe des ordonnées y.
Voici des exemples de formats qui fonctionnent : Degrés décimaux (DD) : 41.40338, 2.17403. Degrés, minutes et secondes (DMS) : 41°24'12.2"N 2°10'26.5"E. Degrés et minutes décimales (DMM) : 41 24.2028, 2 10.4418.
Un graphique en XY ou nuage de points est constitué de deux axes gradués et légendés. L'axe des abscisses est à l'horizontale. L'axe des ordonnées est à la verticale. La légende de chaque axe doit comporter le nom ou le symbole de la grandeur et entre parenthèse le symbole de son unité.
L'axe horizontal (axe des abscisses, ou axe des x) est utilisé pour représenter la variable indépendante, alors que l'axe vertical (axe des ordonnées, ou axe des y) est utilisé pour représenter la variable dépendante.
Pour lire et analyser un graphique, le physicien recherche les informations générales qu'apporte le graphique puis il analyse précisément les informations qu'apportent la courbe afin de voir s'il peut interpréter et ainsi modéliser (trouver une relation mathématique simple entre les grandeurs du graphique).
1) Dans un repère, représenter le nuage de points (xi ; yi). 2) Déterminer les coordonnées du point moyen G du nuage de points. y = (40 + 55 + 55 + 70 + 75 + 95) : 6 = 65. Le point moyen G du nuage de points a pour coordonnées (13 ; 65).
Les points d'intersection du graphique d'une fonction f avec l'axe horizontal sont tous les points du graphique de la forme (a,0). De plus, la valeur x=a est un zéro de la fonction f, car f(a)=0. Ainsi, le nombre de points d'intersection du graphique avec l'axe des x est égal au nombre de zéros de la fonction.
* L'ordonnée à l'origine d'une fonction affine est l'image de 0 par cette fonction, soit : b = f (0) . Démonstration : évidente en calculant l'image de 0. f x = 2 x − 3 .
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
- Si D est parallèle à l'axe des ordonnées : alors l'équation de D est de la forme x = c, où c est un nombre réel. - Si D n'est pas parallèle à l'axe des ordonnées : alors l'équation de D est de la forme y = ax + b, où a et b sont deux nombres réels. Vocabulaire : a est appelé le coefficient directeur de la droite D.