Tout objet a ce que l'on appelle un rayon de Schwardzchild. Si cet objet est compressé au-delà de ce rayon (qui est calculé à partir de la masse de l'objet), il donnera naissance à un trou noir. Par exemple, si on compressait la Terre à la taille d'une bille (0,9 cm de rayon), un trou noir serait créé.
Mauvaise nouvelle pour la Terre
Les forces gravitationnelles responsables de la spaghettification entreraient en action : la surface du globe la plus proche du trou noir serait soumise à une force bien supérieure à celle qui s'exercerait de l'autre côté, entraînant l'arrêt de mort de la planète.
La taille d'un trou noir est directement proportionnelle à sa masse, et toujours la même pour un trou noir d'une masse donnée : par exemple, un trou noir de 3 masses solaires a un diamètre de 18 km, un trou noir dix fois plus massif (donc 30 masses solaires) sera aussi dix fois plus grand, 180 km.
Des scientifiques découvrent le trou noir le plus proche de la Terre à ce jour. Dix fois plus gros que le Soleil, ce trou noir se situe à environ 1600 années-lumière.
Le plus petit trou noir connu a été observé par deux astrophysiciens de la NASA. L'objet céleste, détecté à l'aide d'une nouvelle technique, possède une masse de seulement 3,8 fois celle du Soleil et un diamètre d'un peu plus de 24 kilomètres.
Où va ce qui entre dans un trou noir ? La matière qui entre dans le trou noir se retrouverait comprimée dans un même point central, une singularité gravitationnelle. Nos conceptions du temps et de l'espace s'effondrent dans cette singularité.
Pas n'importe lequel : il s'agit du trou noir supermassif situé au centre de la galaxie Messier 87 (M87), nommé M87*. Ce colosse de 6,5 milliards de fois la masse du Soleil évolue au cœur de sa galaxie, à 55 millions d'années-lumière de la Terre.
Une autre caractéristique est l'effet d'entraînement sur l'espace-temps. En effet, l'influence du trou noir sur la géométrie de l'espace-temps est très forte. La rotation de l'astre doit se répercuter sur cette géométrie, donc également sur le mouvement des corps passant à proximité.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Le trou noir M87* a une masse de l'ordre de 6,5 × 109 masses solaires et un rayon de 19 milliards de kilomètres ; son diamètre est donc de 38 milliards de kilomètres, ou 35 heures-lumière ; comme il est situé à 53,5 millions d'années-lumière de la Terre, son diamètre apparent serait de 15,5 μas (microsecondes d'arc).
On estime ainsi que les trous noirs résidus stellaires commenceront à s'évaporer dans cent milliards de milliards d'années et les trous noirs supermassifs dans un milliards de milliards de milliards de milliards d'années.
Il s'appelle Chuck Clark et il est l'un des meilleurs cosmonautes de la Nasa, l'organisme responsable de la recherche spatiale aux Etats-Unis. Dans 5 ans, cet Américain de 32 ans va vivre une aventure incroyable et très risquée : il s'est porté volontaire pour être le 1er homme à entrer à l'intérieur d'un trou noir !
Un trou blanc (ou fontaine blanche) est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
La tarière est donc un outil de perçage, ou plutôt de forage ou de carottage, puisqu'elle permet de creuser des trous dans tous les sols. Et bien évidemment, tout en creusant, elle excave la terre qui remonte le long de la vis sans fin. Avec une tarière, on obtient des trous profonds, aux parois nettes et propres.
L'utilisation d'un motoculteur
Ameublir un sol dur et sec avant de le travailler est définitivement la meilleure solution à envisager. Dans ce cas, l'utilisation d'un motoculteur est vivement recommandée. Pour travailler une petite surface, nous recommandons d'opter pour un appareil électrique.
Quels gestes peuvent être faits pour éviter le blackout en cas de pénurie d'électricité? Il est recommandé de diminuer la consommation d'énergie, en évitant d'utiliser les électros les plus grands et les plus puissants entre 17h et 20h, et en préparant un kit d'urgence en cas de coupure de courant.
La relativité générale estime que rien ne peut sortir d'un trou noir, pas même l'information concernant la matière aspirée. Cette opposition de lois physiques concernant les trous noirs, mise évidence par Hawking, porte le nom de "paradoxe de l'information".
Une horloge avancerait à un rythme plus lent. En quelque sorte, donc, les trous noirs ralentissent le temps. Cet effet est tellement important que, si notre observateur lance un objet dans la direction du trou noir, il ne le verra jamais pénétrer à l'intérieur du trou noir.
Il n'est pas impossible qu'on trou noir ait une sortie pour évacuer tout ce qu'il a aspiré, dont la lumière, c'est le « trou blanc ». Le trou noir, le trou blanc et le couloir entre les deux, dont l'existence a été suggérée par Einstein et Rosen, est appelé « trou de ver ».
Selon Einstein, la masse du Soleil provoque une déformation de l'espace-temps qui est à l'origine du mouvement de la Terre. C'est pour cette raison que des corps sans masse, comme les photons, subissent les défromations de l'espace-temps (voir l'animation sur les lentilles gravitationnelles).
La modification de la structure du temps, à son tour, influe sur le mouvement de tous les corps, les faisant « tomber » les uns vers les autres. Que signifie « la modification de la structure du temps » ? Eh bien c'est le ralentissement du temps décrit plus haut : chaque corps ralentit le temps autour de lui.
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Un trou noir est créé après la mort d'une étoile très massive. Le noyau de l'étoile s'effondre sur lui-même, ce qui entraine l'expulsion des couches externes de l'étoile en une gigantesque explosion : une supernova. Tout le reste de la matière se concentre en un petit point appelé singularité.
En mai 2022, une collaboration internationale d'astronomes avait prouvé la présence de ce trou noir supermassif au coeur de notre galaxie, baptisé Sagittarius A* (Sgr A*).