Un triangle est dit rectangle quand il possède un angle droit, c'est-à-dire un angle qui mesure 90°. Le côté opposé à l'angle droit est appelé l'hypoténuse. La somme des deux angles aigus est égale à 90°.
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Si un triangle est inscrit dans un cercle et que l'un des côtés du triangle est un diamètre du cercle, alors le triangle est rectangle.
Si un triangle est rectangle alors le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si, dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle.
Une méthode consiste à utiliser la propriété des côtés, qui stipule que si les trois côtés d'un triangle sont égaux aux trois côtés d'un autre triangle, alors les triangles sont congruents.
Dans un triangle rectangle, on appelle cosinus d'un angle aigu le rapport du côté adjacent à l'angle et de l'hypoténuse. Exemple et notation : cos a = AC AB . Dans un triangle rectangle, on appelle sinus d'un angle aigu le rapport du côté opposé à l'angle et de l'hypoténuse. Exemple et notation : sin a = BC AB .
Les propriétés des triangles
Dans n'importe quel triangle, le côté le plus long est opposé à l'angle le plus grand. Par le fait même, le côté le plus petit est opposé à l'angle le plus petit. Ainsi, la longueur du côté d'un triangle influence la mesure de l'angle qui lui est opposé.
La somme des mesures des angles d'un triangle vaut 180°. Article détaillé : Somme des angles d'un triangle. La somme des angles d'un triangle est égale à un angle plat, autrement dit la somme de leurs mesures vaut 180° (degrés) c'est-à-dire π radians. Cette propriété est une caractéristique de la géométrie euclidienne.
D'autre part : AB2 + AC2 = 122 + 52 = 169 dans un triangle ABC, on a : BC2 = AB2 + AC2 le triangle ABC est rectangle en A.
À l'aide du cercle circonscrit
Si l'un des côtés d'un triangle est un diamètre de son cercle circonscrit, alors ce triangle est rectangle et ce diamètre est son hypoténuse. Soit \Gamma le cercle circonscrit au triangle ABC et AB un diamètre de \Gamma.
Le théorème pourra s'appliquer seulement dans deux cas (voir le schéma ci-dessous) : Deux droites sécantes et deux droites parallèles viennent former deux triangles distincts, reliés entre eux par un sommet.
Par les aires des triangles semblables
Les aires des trois triangles semblables AHC, CHB et ACB, portées par les côtés AC, CB et AB sont proportionnelles aux carrés de ces côtés. L'égalité précédente donne donc le théorème de Pythagore, en simplifiant par le coefficient de proportionnalité : AC2 + BC2 = AB2.
rectangle
1. Quadrilatère plan qui possède quatre angles droits ; surface limitée par ce quadrilatère. (Un parallélogramme est un rectangle s'il a un angle droit ou si ses diagonales [segments] ont même longueur. Les médiatrices de deux côtés consécutifs d'un rectangle sont ses axes de symétrie.)
Un triangle rectangle est un triangle dont l'un des angles mesure 90° et est donc un angle droit. Le côté opposé à cet angle droit est appelé l'hypoténuse.
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
La règle du triangle de forces stipule que lorsque trois forces coplanaires agissant en un point sont en équilibre, elles peuvent être représentées en intensité et en direction par les côtés adjacents d'un triangle pris dans un certain ordre.
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle. Un triangle rectangle isocèle étant aussi un demi-carré.
En géométrie, un triangle rectangle est un triangle dont l'un des angles est droit, c'est-à-dire qu'il mesure 90°.
Un polygone qui a trois côtés s'appelle un triangle. Il a également trois sommets et trois angles. On peut le nommer par ses sommets. Ex. : Ce triangle s'appelle ABC.
Deux propriétés importantes sur les triangles équilatéraux : Les trois angles d'un triangle équilatéral sont égaux et valent 60°. Un triangle équilatéral possède 3 axes de symétries, chacun de ces axes passe par un sommet et est la médiatrice du côté opposé au sommet.
► La réciproque du théorème de Pythagore
Si les côtés d'un triangle ABC vérifient l'égalité BC2 = AB2 + AC2, alors le triangle ABC est rectangle en A et le côté [BC] est l'hypoténuse de ce triangle.
AB2+BC2=AC2 A B 2 + B C 2 = A C 2 donc d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en B.
Si deux droites parallèles, toute perpendiculaire à l'une est perpendiculaire à l'autre.