Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental.
La notion d'intégrale d'une fonction est une notion d'analyse très utile, y compris en dehors du champ des mathématiques. Elle est notamment liée au calcul d'aire de surface. Elle permet de calculer des aire de surface pour lesquelles les formules usuelles ne sont d'aucun secours.
Le débat sur la découverte du calcul intégral fait rage dans l'Europe des Lumières. D'un côté, Isaac Newton (1643-1727) ; de l'autre, Gottfried Wilhelm von Leibniz (1646-1716). Voilà les deux plus grands intellectuels de leur temps.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
pour tout x dans l'intervalle [a, b]. f(t)dt. Lorsqu'on trouve une primitive d'une fonction f dans une table, ou qu'elle se déduit des tables à partir de quelques calculs algébriques, il n'y a rien d'autre à faire : L'intégrale est donnée par la Formule de Newton-Leibniz. (e2x + sin(x))dx.
Intégrale et primitives
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
L'intégrale de la fonction f sur [ a ; b ] notée est en unités d'aire, la différence entre : les aires situées au dessus de (Ox) et les aires situées en dessous de (Ox).
L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
On appelle intégrale de f entre a et b le nombre F(b) – F(a). et se lit : « intégrale de a à b de f(t) dt », a et b étant les bornes de l'intégrale. Remarques : Ce nombre est indépendant de la primitive F choisie. En effet si G est une autre primitive de f, alors G = F +k et donc G(b) – G(a) = F(b) – F(a).
Grossièrement, l'intégrale de f représente l'aire entre la courbe de f et l'axe des abscisses en comptant positivement ce qui est au-dessus et négativement ce qui en-dessous de cet axe. Si ton intégrale a l'air négative c'est que l'aire en-dessous de l'axe des abscisses est plus importante que celle qui est au-dessus.
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
Pour conceptualiser l'intégrale, il faut imaginer que tu resserres de plus en plus l'espace vide qui subsiste entre ces points (en en rajoutant plein), jusqu'à ce que tu passes d'un point à un autre sans voir la différence. L'intégrale est en fait une somme qui se calcule généralement sur un ensemble infini.
Une intégrale est une surface : somme de a à b de f(x)dx signifie tout simplement que pour tout x entre a et b, on prend autour de x une toute petite longueur dx que l'on multiplie par la valeur de la fonction f au point x.
Si la fonction est positive sur l'intervalle d'intégration, l'intégrale est positive et donc I_{n+1}-I_{n} est positif. Si la fonction est négative sur l'intervalle d'intégration, l'intégrale est négative et donc I_{n+1}-I_{n} est négatif.
Soit I un intervalle de R et f:I→R f : I → R . On dit que f est uniformément continue si ∀ε>0, ∃η>0, ∀(x,y)∈I2, |x−y|<η⟹|f(x)−f(y)|<ε.
La mathématique ne s'impose pas à la médecine, c'est de la clinique elle-même que se forme la méthode numérique. En ce sens, elle est une technique permettant de préciser ce qui existe en puissance dans l'observation du pathologique.
Considérons la fonction f définie sur R par f(x)=3x2. La fonction F définie sur R par F(x) = x3 est une primitive de f sur R puisque F′(x) = f(x). La fonction G définie sur R par G(x) = x3 + 2 est aussi une primitive de f sur R puisque G′(x) = f(x). √x2 + 3 = f(x).
On peut calculer des intégrales de produits de fonctions en utilisant la formule d'intégration par parties : 𝑢 𝑣 𝑥 𝑥 = 𝑢 𝑣 − 𝑣 𝑢 𝑥 𝑥 , d d d d d d où 𝑢 et 𝑣 sont des fonctions dérivables.
F'(x) = G'(x) + m = f(x). Si F est une primitive de f sur I, alors (F + k)' = F' = f, donc F + k est aussi une primitive de f sur I. Réciproquement, soit G une primitive de f sur I. Alors G' = f = F', donc G' – F' = 0, soit encore (G – F)' = 0.
Une intégrale est dite impropre lorsque une des bornes est \(\pm \infty\), ou si la fonction intégrée n'est pas continue sur l'intervalle d'intégration.
Qu'appelle-t-on une intégrale impropre ? Si sur un certain intervalle le domaine sous la courbe de la fonction est illimité, alors l'intégrale de sur cet intervalle est dite impropre. C'est le cas si au moins l'une des bornes d'intégration est ou .
Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.
Le volume d'un cylindre droit P = D×[0, h] (de base D et de hauteur h) se ramène à l'intégrale double ∬Dh dxdy sur le domaine D du plan xy. On retrouve ainsi, dans le cas particulier d'un cylindre droit, la formule classique : Volume d'un cylindre = aire base × hauteur.
Pour calculer u1, on fait n = 0 dans (*) : u1 = 2u0 − 1 = 2 χ 3 − 1 = 5. Pour calculer u2, on fait n = 1 dans (*) : u2 = 2u1 − 1 = 2 χ 5 − 1 = 9. De même : u3 = 2u2 − 1 = 17. On remarque que, pour calculer un terme de la suite, on doit calculer tous les termes d'indice inférieur.