La liste des diviseurs de 45 est (1, 3, 5, 9, 15, 45), parmi lesquels 3 et 5 sont premiers. La liste des diviseurs de 61 est (1, 61) : c'est un nombre premier. La liste des diviseurs de 32 est (1, 2, 4, 8, 16, 32) et 2 est bien un nombre premier.
45. On remarque que 15 est le plus grand diviseur commun.
Les multiples de 45 sont : 0, 45, 90, 135, etc.
17 et 3 sont des diviseurs de 51. 51 est un multiple de 3 et 17. 51 est divisible par 3 et 17.
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
1. Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs.
55 a pour diviseurs : 1, 5,11 et 55. 32 a pour diviseurs : 1, 2, 4, 8, 16 et 32. L'unique diviseur commun de 55 et 32 est 1 : PGCD (55 ; 32) = 1 Réponse : Les entiers 55 et 32 sont premiers entre eux.
Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
Les deux plus petits diviseurs de 45 sont 1 et 3 car tous les diviseurs de 45 sont 1, 3, 5, 9, 15 et 45. 32 ×3×7 = 22 21 .
La liste des nombres composés inférieurs à 25 est : 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24.
Pour qu'un nombre soit divisible par 4, il faut qu'il soit divisible par 2 et encore par 2. e. Un nombre divisible par 6 est divisible par 3 et par 2.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 46) est la suivante : 1, 2, 23, 46. Pour que 46 soit un nombre premier, il aurait fallu que 46 ne soit divisible que par lui-même et par 1.
Voici sa réponse. Les duriseurs premiers communs à 45 et 99 à sont 3 et 9 Que peut-on en penser ?
PGCD(45; 28) = 1 ´ 45 et 28 sont deux nombres premiers entre eux.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 70) est la suivante : 1, 2, 5, 7, 10, 14, 35, 70.
Donc les diviseurs communs de 56 et 90 sont 1 et 2 et PGCD (56 ; 90) = 2. ➋ 64 et 123 D'après l'exercice n°2 : • Les diviseurs de 64 sont 1 ; 2 ; 4 ; 8 ; 16 ; 32 et 64. Les diviseurs de 123 sont 1 ; 3 ; 41 et 123. Donc les nombres 64 et 123 ont un seul diviseur commun 1 et PGCD (64 ; 123) = 1.
Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.