496 = 1 x 496 = 2 x 248 = 4 x 124 = 8 x 62 = 16 x 31 1+ 2+ 4+ 8+ 16+ 31+ 62+ 124+ 248 = 496 Donc 496 est un nombre parfait. Définition : deux nombres sont dits amicaux lorsque chacun de ces nombres est égal à la somme des diviseurs de l'autre excepté lui-même. 2. Vérifier que 220 et 284 sont amicaux.
Deux nombres sont dits « amicaux » quand la somme des diviseurs de l'un est égale à l'autre, par exemple (220, 284).
Somme des diviseurs propres de 284 : 1+2+4+71+142=220. A ce sujet, on attribue à Pythagore une citation : « Un ami est l'autre moi-même comme sont 220 et 284. » Le second couple de nombres amiables fut découvert par Pierre de Fermat (1601 ; 1665), il s'agit de 17296 et 18416.
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
La liste des diviseurs de 45 est (1, 3, 5, 9, 15, 45), parmi lesquels 3 et 5 sont premiers. La liste des diviseurs de 61 est (1, 61) : c'est un nombre premier. La liste des diviseurs de 32 est (1, 2, 4, 8, 16, 32) et 2 est bien un nombre premier.
Les diviseurs de 175 sont : 1, 5, 7, 25, 35, 175.
Les diviseurs de 126 sont : 1 ; 2 ; 3 ; 6 ; 7 ; 9 ; 14 ; 18 ; 21 ; 42 ; 63 ; 126.
Le plus grand diviseur commun de deux ou plusieurs monômes
On trouve la décomposition maximale de chaque monôme, puis on cherche les facteurs communs apparaissant dans ces décompositions. Le monôme égal au produit de ces facteurs communs sera le plus plus grand commun diviseur des monômes.
En effet 1 + 2 + 4 + 8 + 16 + 32 + 37 + 74 + 148 + 296 + 592 = 1210 et ce sont les diviseurs propres de 1184 alors que les diviseurs propres de 1210 sont : 1, 2, 5, 10, 11, 22, 55, 110, 121, 242 et 605.
On peut décomposer 324 en produit de facteurs premiers pour aider : 324 = 22 × 34. Les diviseurs de 324 sont 1 ; 2 ; 3 ; 4 ; 6 ; 9 ; 12 ; 18 ; 27 ; 36 ; 54 ; 81 ; 108 ; 162 ; 324.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210. a est un diviseur de b (au sens « large »).
Le PGCD sert notamment à simplifier des fractions. Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18.
De fait, 200 est composé et possède exactement douze diviseurs : 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100 et 200. Mais cette propriété n'établit pas un record pour lui car 60, qui est plus petit, possède lui aussi douze diviseurs.
Les diviseurs de 25 sont 1, 5 et 25.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42. Les diviseurs de 51 sont : 1,3,17,51. Les diviseurs communs de 42 et 51 sont 1 et 3, donc 42 et 51 ne sont pas premiers entre eux.
357 = 153 x 2 + 51 donc PGCD( 357 ; 153 ) = PGCD ( 153 ; 51 ). 153 = 51 x 3 + 0 donc PGCD( 153 ; 51 ) = 51. Conclusion : 51 est un diviseur de 153. Le PGCD de 510 et 357 est donc 51 ( -dernier reste non nul ).