Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
Relier un sommet au milieu du côté opposé
On trace la droite reliant un premier sommet du triangle au milieu du côté opposé. On obtient la première médiane. On trace la droite reliant le sommet A au milieu du côté opposé.
Les éléments remarquables d'un triangle sont des points, droites ou cercles définis en relation avec ce triangle et possédant des propriétés géométriques remarquables.
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure.
Dans un triangle, les médiatrices des trois côtés sont concourantes en un point qui est le centre du cercle circonscrit de ce triangle. La médiatrice d'un segment est un axe de symétrie de ce segment.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle.
Le centre du cercle inscrit dans un triangle est le point d'intersection des trois bissectrices d'un triangle. Dans un triangle, l'hypoténuse est le plus grand côté. Une médiatrice est une droite qui passe par le milieu d'un segment et qui est perpendiculaire à ce même segment.
Une droite est dite remarquable dans un triangle lorsqu'elle possède une ou plusieurs propriétés quel que soit le triangle. Il existe 4 types de droites remarquables dans le triangle : la médiane, la médiatrice, la hauteur et la bissectrice.
On peut distinguer 3 identités remarquables : La première égalité remarquable : (a+b)² = a² + 2ab + b² ; La deuxième égalité remarquable : (a-b)² = a² – 2ab + b² ; (a+b)²; La troisième égalité remarquable : (a+b) (a-b) = a² – b².
(a + b) (c + d) = ac + ad + bc +bd.
Les trois médianes d'un triangle sont concourantes. Leur point d'intersection est l'isobarycentre des trois sommets, souvent appelé « centre de gravité du triangle ».
Le centre de gravité d'un triangle est au 2/3 en partant du sommet de chacune de ses médianes.
médiatrice n.f. Droite perpendiculaire à un segment et passant par son milieu.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie. Exemple : Tous les triangles possèdent un orthocentre.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
Définition : Dans un triangle, une hauteur est une droite passant par un sommet et perpendiculaire au côté opposé. Il y a donc 3 hauteurs. Le point d'intersection d'une hauteur et d'un côté s'appelle le pied de la hauteur.
Tout point situé sur la médiatrice d'un segment se trouve à égale distance de chacune des extrémités de ce segment. C'est pourquoi les sommets du triangle se trouvent tous sur un même cercle. C'est la droite qui coupe un angle en deux angles égaux.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
Les angles à la base d'un triangle isocèle sont égaux. Réciproquement, tout triangle ayant deux angles égaux est isocèle.
Placer la pointe sèche du compas sur le sommet de l'angle et tracer un arc qui coupe les deux côtés de l'angle. Placer la pointe sèche du compas sur une intersection de l'arc de cercle et d'un côté de l'angle. Tracer un nouvel arc dans l'ouverture de l'angle. Refaire l'opération à partir de l'autre intersection.
- Pour tracer la bissectrice de l'angle , on trace un arc de cercle de centre O qui coupe les deux demi-droites [Ox) et [Oy) en A et B respectivement. - Puis on tracedeux arcs de cerlce de même rayon, l'un de centre A, l'autre de centre B.
► Un triangle isocèle possède deux côtés égaux et deux angles égaux. ► Si un triangle possède deux angles égaux, alors il est isocèle !