En géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit.
Les propriétés des triangles
Dans n'importe quel triangle, le côté le plus long est opposé à l'angle le plus grand. Par le fait même, le côté le plus petit est opposé à l'angle le plus petit. Ainsi, la longueur du côté d'un triangle influence la mesure de l'angle qui lui est opposé.
D'après le théorème de Pythagore, si, dans un triangle, le carré du côté le plus long est égal à la somme des carrés des deux autres côtés, alors c'est un triangle rectangle. Si BC2 = AC2 + AB2 alors le triangle ABC est rectangle en A. Découvre comment appliquer le théorème de Pythagore.
La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 120 = 60°. Propriété 2: Dans un triangle rectangle, la somme des mesures des angles reposant sur l'hypoténuse est égale à 90°. Propriété 3: Dans un triangle équilatéral, les angles sont égaux et mesurent 60°.
En géométrie, un triangle rectangle est un triangle dont l'un des angles est droit, c'est-à-dire qu'il mesure 90°. Le côté opposé à l'angle droit est appelé l'hypoténuse. C'est toujours le côté de plus grande longueur. Ce triangle ABC est rectangle en C.
Une méthode consiste à utiliser la propriété des côtés, qui stipule que si les trois côtés d'un triangle sont égaux aux trois côtés d'un autre triangle, alors les triangles sont congruents.
Triangle rectangle
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle. La hauteur permet de calculer l'aire du triangle.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Il existe différents types d'angle : L'angle nul, qui mesure 0°. L'angle plat, qui mesure 180°. L'angle plein, qui mesure 360°.
Définition de hypoténuse nom féminin
Géométrie Le côté opposé à l'angle droit, dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (théorème de Pythagore).
Exemple : – Considérons un triangle ABC tel que AB = 3 cm, BC = 4 cm et AC = 5 cm. Pour prouver que ce triangle est rectangle, nous pouvons utiliser la propriété de Pythagore : si AB² + BC² = AC², alors le triangle est rectangle. Nous avons AB² = 3² = 9 et BC² = 4² = 16.
Théorème de Pythagore (P) Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°. Plus précisément, on peut dire que le triangle est rectangle isocèle en A.
Deux propriétés importantes sur les triangles équilatéraux : Les trois angles d'un triangle équilatéral sont égaux et valent 60°. Un triangle équilatéral possède 3 axes de symétries, chacun de ces axes passe par un sommet et est la médiatrice du côté opposé au sommet.
Si deux droites sont parallèles à une même troisième, alors elles sont parallèles. Si deux droites sont perpendiculaires à une même troisième, alors elles sont parallèles. Si deux droites, coupées par une sécante, déterminent des angles alternes-internes égaux, alors elles sont parallèles.
Angle dont la mesure en degrés est égale à 360.
Un triangle qui a trois angles aigus se nomme un triangle acutangle. Visuel : [L'enseignante ajoute l'adjectif « acutangle » à côté du mot « isocèle » sur le chevalet.] Enseignante : Donc maintenant, notre triangle s'appelle triangle isocèle acutangle.
La mesure d'un angle aigu est plus petite que 90°. La mesure d'un angle droit est de 90°. La mesure d'un angle obtus se situe entre 90° et 180°. La mesure d'un angle plat est de 180°.
Il s'est servi de cette observation pour construire un triangle rectangle tridimensionnel dont les deux côtés égaux se rejoignent à angle droit avant de déduire sa célèbre équation : « le carré de l'hypoténuse est égal à la somme des carrés de la catheti » ou simplement « a² + b² = c² », comme on le dit aujourd'hui.
Théorème de Pythagore :
Si un triangle est rectangle , alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Exemple 1 : Soit le triangle ABC rectangle en A ([BC] est donc l'hypoténuse), alors BC²=AC²+BA².
Théorème de Pythagore: "Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des 2 autres côtés".
Le théorème de la hauteur relative à l'hypoténuse
Dans un triangle rectangle, la hauteur issue de l'angle droit (h) est moyenne proportionnelle entre les 2 segments qu'elle détermine sur l'hypoténuse (m et n).
car l'hypoténuse est le côté opposé à l'angle rectangle. donc, c' est forcément le côté du triangle le plus grand.:) Bonsoir.
Un triangle rectangle est un triangle dont l'un des angles mesure 90° et est donc un angle droit. Le côté opposé à cet angle droit est appelé l'hypoténuse.