Il faut considérer trois sources d'erreur (uncertainty en anglais) : l'exactitude de la mesure Δ1, ou l'incertitude (resolution en anglais) ; la dispersion statistique Δ2 (precision en anglais) ; l'erreur systématique Δ3 (accuracy en anglais).
Au final, les erreurs commises lors d'une mesure ont trois origines : l'instrument, l'expérimentateur et les conditions d'expérimentation. Ces erreurs sont de deux sortes : les erreurs aléatoires qui interviennent à chaque mesure et dont le sens par rapport à la valeur vraie est imprévisible.
Une source d'incertitude est un élément utilisé dans la construction de la prévision (données, hypothèses...) qui est incertain et qui entraîne la présence d'une incertitude dans nos prévisions en sortie.
« Où est l'erreur ? » est un livre-jeu où vous retrouverez 10 scènes inspirées de l'histoire, de la science, du sport, des voyages et des grandes explorations.
Ainsi, une erreur et une incertitude diffèrent, en ce sens que l'erreur est la représentation de la différence entre une valeur mesurée d'une grandeur et une valeur de référence, et que l'incertitude évalue quantitativement la qualité d'un résultat de mesure, par un écart type.
Le mot "erreur" se réfère à quelque chose de juste ou de vrai. On parle d'erreur sur une mesure physique lorsqu'on peut la comparer à une valeur de référence qu'on peut considérer comme "vraie" (par ex: mesure de la vitesse de la lumière, de la température du zéro absolu).
Il est conseiller d'effectuer les calculs intermédiaires avec un nombre de chiffres significatifs plus élevé pour éviter les arrondis de calcul , par contre, il faut arrondir le résultat final au même nombre de chiffres significatifs que celui adopté lors de la mesure initiale.
Par exemple, si un thermocouple indique une température de 25,1 °C alors que l'appareil de référence indique 26,0 °C, l'erreur absolue de la mesure est égale à -0,9°C. L'erreur relative est égale à -3,46%.
Rappelons maintenant que si une erreur systématique est un problème dans le processus de mesure qui se produit pour chaque mesure effectuée, une erreur aléatoire est une erreur qui se produit de manière imprévisible. Et elle a généralement comme source des facteurs inconnus.
Définition (Erreur aléatoire)
Lors de mesurages répétés, une erreur est dite aléatoire si elle varie de façon imprévisible. Dans ce cas les différents résultats de mesures se répartissent de façon aléatoire autour d'une valeur moyenne.
ERREUR ACCIDENTELLE (ou FORTUITE) (l.f.) (AFNOR NF x 07001) Erreur qui varie d'une façon imprévisible en valeur absolue et en signe lorsqu'on effectue un grand nombre de mesurages de la même valeur d'une grandeur dans des conditions pratiquement identiques.
Exemple. Si l'erreur absolue d'une mesure est ε = 0,2 m sur une mesure de 40 m, alors l'erreur relative est donnée par : 40,2−4040=0,005. L'erreur relative est donc de 0,5 %.
L'erreur expérimentale est la différence entre la mesure et sa valeur acceptée. Il y a deux principaux types d'erreurs expérimentales : l'erreur systématique et l'erreur aléatoire.
Les erreurs systématiques sont souvent difficiles à détecter a priori, mais elles peuvent dans les cas les plus simples être déduites a posteriori à partir de l'allure des résultats. Il est alors possible de corriger les valeurs mesurées en leur ajoutant une correction compensant pour l'erreur systématique.
L'incertitude-type donne un regard critique sur une série de mesures. On définit avec elle des conventions d'écriture, elle permet d'établir un intervalle de confiance. L'écart relatif permet de comparer le résultat de la mesure obtenu à une valeur attendue.
bavure, bêtise, bévue, confusion, faute, irrégularité, malentendu, méprise, quiproquo.
On peut calculer la justesse d'une mesure en déterminant la moyenne des mesures prises expérimentalement, puis en calculant la différence entre cette moyenne et la valeur théorique (ou la valeur attendue). Une différence très petite signifie que les mesures prises en laboratoire sont justes.
Pour rendre compte du degré d'approximation auquel nous travaillerons, nous devrons estimer les erreurs commises dans les diverses mesures et nous devrons calculer leurs conséquences dans les résultats obtenus. C'est le but du calcul d'erreur ou calcul d'incertitude.
Lors d'expériences, un écart relatif est une valeur calculée qui permet de déterminer si le produit ciblé par l'expérimentation respecte son cahier des charges ou non. Plus l'écart relatif est petit, plus la grandeur mesurée est satisfaisante car elle est proche de la grandeur de référence attendue.
L'incertitude absolue est l'erreur maximale que l'on peut effectuer en déterminant une mesure sur un appareil. Tout résultat expérimental se situe entre une valeur minimale et une valeur maximale.
Soustrayez la valeur réelle à la valeur mesurée.
Étant donné que l'erreur absolue est forcément positive, vous devez prendre la valeur absolue de cette différence et ignorer tout signe négatif X Source de recherche . Vous obtenez ainsi l'erreur absolue. . L'erreur absolue est donc de 2 mètres.
Pourquoi les erreurs s'introduisent-elles dans le processus de mesure ? - Limite de précision de l'appareil de mesure, - La façon dont les mesures sont effectuées, - L'instabilité de l'objet mesuré.
L'erreur est considérée comme une étape de l'apprentissage, nécessaire et source d'enseignements pour tous. L'apprentissage n'est pas un processus linéaire. Il passe par essais, tâtonnements, erreurs, échecs… Il y a donc pour les élèves un droit à l'erreur qui doit être reconnu et pris en compte.