Une fonction définie par morceaux est une fonction dont l'expression dépend de l'intervalle auquel appartient la variable. Par exemple la fonction f telle que f(x) = 2x si x < 0 et f(x) = 3x si x ≥ 0, est une fonction définie par morceaux.
Une fonction est un processus (une machine) qui à un nombre associe un unique nombre. Si on appelle f la fonction et x le nombre de départ, alors : x est la variable ; f ( x ) f(x) f(x) est le nombre associé à x par la fonction f.
Une description de fonction se construit selon une logique d'entonnoir : du plus général au plus concret, du titre de la fonction à des exemples de tâches. Elle intègre éventuellement des informations complémentaires à la fin du texte, selon le contexte de votre institution.
En mathématique, une « machine » ou une « chaine de machine » qui transforme un nombre est appelé une fonction. x est le nombre de départ, on l'appelle l'antécédent. 3x + 15 est le nombre d'arrivée. On le note f(x) = 3x + 15 et on l'appelle l'image de x.
La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère. La représentation graphique d'une fonction affine est une droite passant par le point de coordonnées (0 ; b). Vocabulaire : a est appelé le coefficient directeur de la droite.
De façon formelle, soit f une fonction à valeurs réelles, l'ensemble de définition de f est l'ensemble des réels x pour lesquels l'image f ( x ) existe ou pour lesquels f ( x ) a un sens. L'ensemble de définition d'une fonction f est souvent noté D f .
La fonction affine est une fonction qui, à un nombre x, associe ax+b où a et b sont deux réels donnés. Une fonction affine représentée par une droite non parallèle à l'axe des ordonnées. Lorsque b = 0, il s'agit d'une fonction linéaire qui est représentée par une droite passant par l'origine du repère.
La représentation graphique d'une fonction, c'est l'ensemble des points (x, y). On représente la variable indépendante, x, en abscisses et la variable dépendante, y, en ordonnées. Équation ou expression algébrique On note par y=f(x) et elle est appelée équation de la fonction.
Une fonction est une relation qui, à chaque valeur de la variable x, fait correspondre au plus une (0 ou 1) valeur de y. Pour exprimer que y dépend de x, on écrit : y = f(x).
La fonction définie par f ( x ) = 2 x + 1 ou f : x ↦ 2 x + 1 est une fonction affine de coefficient directeur 2 et d'ordonnée à l'origine 1. Propriété 2 : La représentation graphique d'une fonction affine est une droite. Pour tracer une fonction affine, il suffit seulement de placer deux points de la courbe.
Une fonction fait correspondre chaque nombre de gauche à un nombre de droite, que l'on représenter par une flèche : Le f au-dessus des flèches signifie que la fonction s'appelle f, mais on aurait très bien pu l'appeler par une autre lettre (les fonctions s'appellent généralement par des lettres, on prend souvent f).
Par exemple, ℝ* est l'ensemble des nombres réels privé de 0. Tous les nombres de l'ensemble des entiers naturels ℕ appartiennent à l'ensemble des entiers relatifs ℤ.
pour montrer que f est définie sur R, tu dois démontrer qu'il n'y a pas de valeur interdite. C'est à dire que x²+x+1 n'est jamais nul. Sinon en respectant les règles de priorité entre opérations on n'arrive pas à ce que tu voudrais.
f est une fonction paire lorsque Df est centré en 0 et, pour tout réel x de Df, f(−x)=f(x). f est une fonction impaire lorsque Df est centré en 0 et, pour tout réel x de Df, f(−x)=−f(x). f est une fonction périodique de période T lorsque, pour tout réel x de Df, x+T∈Df et f(x+T)=f(x).
Fonction définie dans l'ensemble des nombres réels par une relation de la forme f(x) = k, où k est un nombre réel.
* Si une fonction est linéaire, alors sa représentation graphique est une droite qui passe par l'origine. * Réciproquement, si la représentation graphique d'une fonction est une droite qui passe par l'origine du repère, alors cette fonction est linéaire.
Une fonction est constante si et seulement si son image est réduite à un singleton. Une fonction constante d'une variable réelle est représentée par une droite parallèle à l'axe des abscisses. La dérivée d'une fonction constante est nulle.
La fonction d'un mot ou d'un groupe de mots est le rôle qu'il occupe par rapport à un autre mot ou groupe de mots. Ainsi on dira d'un mot qu'il est le sujet du verbe x, le complément du nom y, etc.
La correspondance qui à tout nombre positif fait correspondre les deux nombres dont il est le carré n'est pas une fonction. En effet, il n'y a pas unicité. Par exemple 4 est le carré de 2 et - 2. L'ensemble de définition d'une fonction est l'ensemble des nombres réels pour lesquels on peut calculer une unique image.
Une fonction f est un procédé qui à un nombre x associe un nombre noté f(x). On note : f : x | f(x) on lit : la fonction f qui, à un nombre x, associe le nombre f(x). Le nombre f(x) est appelé image de x par la fonction f. Le nombre x est un antécédent de f(x) par la fonction f.
fonction EXPRESSIVE: centrée sur le destinateur qui manifeste ses émotions, son affectivité. Axée sur le « je ». Elle englobe égalementl'acquisition d'expressions, d'un style, d'une façon bien personnelle de s'exprimer.